Supported amines are a promising class of CO2 sorbents offering large uptake capacities and fast uptake rates. Among supported amines, poly(ethyleneimine) (PEI) physically impregnated in the mesopores of SBA-15 silica is widely used. Within these composite materials, the chain dynamics and morphologies of PEI strongly influence the CO2 capture performance, yet little is known about chain and macromolecule mobility in confined pores. Here, we probe the impact of the support–PEI interactions on the dynamics and structures of PEI at the support interface and the corresponding impact on CO2 uptake performance, which yields critical structure–property relationships. The pore walls of the support are grafted with organosilanes with different chemical end groups to differentiate interaction modes (spanning from strong attraction to repulsion) between the pore surface and PEI. Combinations of techniques, such as quasi-elastic neutron scattering (QENS), 1H T 1–T 2 relaxation correlation solid-state NMR, and molecular dynamics (MD) simulations, are used to comprehensively assess the physical properties of confined PEI. We hypothesized that PEI would have faster dynamics when subjected to less attractive or repulsive interactions. However, we discover that complex interfacial interactions resulted in complex structure–property relationships. Indeed, both the chain conformation of the surface-grafted chains and of the PEI around the surface influenced the chain mobility and CO2 uptake performance. By coupling knowledge of the dynamics and distributions of PEI with CO2 sorption performance and other characteristics, we determine that the macroscopic structures of the hybrid materials dictate the first rapid CO2 uptake, and the rate of CO2 sorption during the subsequent gradual uptake stage is determined by PEI chain motions that promote diffusive jumps of CO2 through PEI-packed domains.
Direct air capture (DAC) processes for extraction of CO 2 from ambient air are unique among chemical processes in that they operate outdoors with minimal feed pretreatments. Here, the impact of humidity on the oxidative degradation of a prototypical solid supported amine sorbent, poly(ethylenimine) (PEI) supported on Al 2 O 3 , is explored in detail. By combining CO 2 adsorption measurements, oxidative degradation rates, elemental analyses, solid-state NMR and in situ IR spectroscopic analysis in conjunction with 18 O labeling of water, a comprehensive picture of sorbent oxidation is achieved under accelerated conditions. We demonstrated that the presence of water vapor can play an important role in accelerating the degradation reactions. From the study we inferred the identity and kinetics of formation of the major oxidative products, and the role(s) of humidity. Our data are consistent with a radical mediated autooxidative degradation mechanism.
Gold nanorods (GNRs) are of great interest in cancer therapy given their ability to ablate tumor cells using deep tissue-penetrating near-infrared light. GNRs coated with tumor-specific moieties have the potential to target tumor tissue to minimize damage to normal tissue. However, perfect targeting is difficult to achieve given that nanoparticles could be broadly dispersed inside the body. Moreover, interaction between targeting groups and biological molecules could lower targeting abilities, resulting in off-target accumulation which might produce nanotoxicity. Here we introduce GNR-encapsulated microcubes (GNR@MCs) that can be utilized as implantable photothermal agents. GNR@MCs are created by encapsulating GNRs in polymeric networks via stop flow lithography (SFL), a one-phase synthesis technique which allows for creation of surfactant-free, uniform particles, and injection of GNR@MCs into the body after a simple rinse step. GNRs are highly packed and firmly encapsulated inside MCs, and entrapped GNRs exhibit optical properties comparable to that of unbound GNRs and photothermal efficiency (58%) in line with that of nano-sized agents (51–95%). Photothermal ablation in murine models is achieved using GNR@MCs stably implanted into the tumor tissue, which suggests that GNR@MCs can be a safe and effective platform for cancer therapy.
Hyperbranched poly(ethylenimine) (HB-PEI) has been distinguished as a promising candidate for carbon dioxide (CO2) capture. In this study, we investigate the distribution and transport of CO2 molecules in a HB-PEI membrane at various hydration levels using molecular dynamics (MD) simulations. For this, model structures consisting of amorphous HB-PEI membranes with CO2 molecules are equilibrated at various hydration levels. Under dry conditions, the primary and secondary amines are highly associated with CO2, indicating that they would participate in CO2 capture via the carbamate formation mechanism. Under hydrated conditions, the pair correlations of CO2 with the primary and secondary amines are reduced. This result suggests that the carbamate formation mechanism is less prevalent compared to dry conditions, which is also supported by CO2 residence time analysis. However, in the presence of water molecules, it is found that the CO2 molecules can be associated with both amine groups and water molecules, which would enable the tertiary amine as well as the primary and secondary amines to capture CO2 molecules via the bicarbonate formation mechanism. Through our MD simulation results, the feasibilities of different CO2 capture pathways in HB-PEI membranes are demonstrated at the molecular level.
Flow lithography (FL), a versatile technique used to synthesize anisotropic multifunctional microparticles, has attracted substantial interest, given that the resulting particles with complex geometries and multilayered biochemical functionalities can be used in a wide variety of applications. However, after this process, there are double bonds remaining from the cross-linkable groups of monomers. The unreacted cross-linkable groups can affect the particles’ biochemical properties. Here, we verify that the microparticles produced by FL contain a significant number of unreacted acrylate double bonds (UADBs), which could cause irreversible biochemical changes in the particle and pernicious effects to biological systems. We also confirm that the particles contain a considerable number of UADBs, regardless of the various synthetic (lithographic) conditions that can be used in a typical FL process. We present an effective way to eliminate a substantial amount of UADBs after synthesis by linking biochemically inert poly(ethylene glycol) based on click chemistry. We verify that eliminating UADBs by using this click chemistry approach can efficiently resolve problems, such as the occurrence of random reactions and the cytotoxicity of UADBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.