Hyperbranched poly(ethylenimine) (HB-PEI) has been distinguished as a promising candidate for carbon dioxide (CO2) capture. In this study, we investigate the distribution and transport of CO2 molecules in a HB-PEI membrane at various hydration levels using molecular dynamics (MD) simulations. For this, model structures consisting of amorphous HB-PEI membranes with CO2 molecules are equilibrated at various hydration levels. Under dry conditions, the primary and secondary amines are highly associated with CO2, indicating that they would participate in CO2 capture via the carbamate formation mechanism. Under hydrated conditions, the pair correlations of CO2 with the primary and secondary amines are reduced. This result suggests that the carbamate formation mechanism is less prevalent compared to dry conditions, which is also supported by CO2 residence time analysis. However, in the presence of water molecules, it is found that the CO2 molecules can be associated with both amine groups and water molecules, which would enable the tertiary amine as well as the primary and secondary amines to capture CO2 molecules via the bicarbonate formation mechanism. Through our MD simulation results, the feasibilities of different CO2 capture pathways in HB-PEI membranes are demonstrated at the molecular level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.