High-quality Zn 1Ϫx Mg x O(0.00рxр0.49) thin films were epitaxially grown at 500-650°C on Al 2 O 3 ͑00•1͒ substrates using metalorganic vapor-phase epitaxy. By increasing the Mg content in the films up to 49 at. %, the c-axis constant of the films decreased from 5.21 to 5.14 Å and no significant phase separation was observed as determined by x-ray diffraction measurements. Furthermore, the near-band-edge emission peak position showed blueshifts of 100, 440, and 685 meV at Mg content levels of 9, 29, and 49 at. %, respectively. Photoluminescent properties of the alloy films are also discussed.
The origin of ferromagnetism in ZnO-based systems was investigated using Co-doped ZnO thin films as prototypical examples of II–VI-based diluted magnetic semiconductors. In spite of the atomic-scale dissolution of Co ions in wurtzite ZnO, both the magnetization-temperature curve and the magnetization-field curve demonstrated that Zn1−xCoxO thin films were paramagnetic for x⩽0.12. On the other hand, Zn1−xCoxO films with x greater than 0.12 were characterized by the Co-metal clustering and apparently showed room-temperature ferromagnetism. The discrepancy between the zero-field cooling and the field cooling curves further indicates that Co-doped ZnO films (for x>0.12) are superparamagnetic and the observed ferromagnetism originates from the nanometer-sized Co clusters.
Hybrid perovskites are currently the fastest growing photovoltaic technology, having reached a solar cell efficiency of over 20%. One possible strategy to further improve the efficiency of perovskite solar cells is to tune the degree of octahedral tilting of the halide frame, since this in turn affects the optical band gap and carrier effective masses. It is commonly accepted that the ion sizes are the main control parameter influencing the degree of tilting in perovskites. Here we re-examine the origin of octahedral tilts in halide perovskites from systematic first-principles calculations. We find that while steric effects dominate the tilt magnitude in inorganic halides, hydrogen bonding between an organic A-cation and the halide frame plays a significant role in hybrids. For example, in the case of MAPbI 3 , our calculations suggest that, without the contribution from hydrogen bonding, the octahedra would not tilt at all. These results demonstrate that tuning the degree of hydrogen bonding can be used as an additional control parameter to optimize the photovoltaic properties of perovskites.
A series of titanate-based layered perovskites having large values of the spontaneous polarization P(s) were developed for their applcations to nonvolatile ferroelectric random access memories. Among these, the Nd-modified bismuth titanate [Bi(4-x)Nd(x)Ti(3)O(12) (BNdT)] system exhibited the most remarkable ferroelectric properties. The c-axis oriented BNdT capacitor was characterized by a switchable remanent polarization 2P(r) of over 100 microC/cm(2) and imprinting and fatigue-free behavior. The active Ti site responsible for the giant P(s) was identified with the help of Rietveld analysis, x-ray absorption near-edge structure study, and ab initio quantum computations.
Highly (111)-oriented rhombohedral BiFeO3 (BFO) thin films were grown on (111) SrTiO3 substrates by pulsed laser deposition. Polarized Raman-scattering study of the (111)-oriented epitaxial BFO thin film with rhombohedral R3c symmetry was carried out by employing two distinct backscattering geometries. The A1-symmetry transverse-optical [A1(TO)] phonons were selectively isolated from the E-symmetry transverse-optical [E(TO)] phonons by employing Y′(ZZ)Y′ polarization configuration in a novel side-view backscattering. By comparing the Y′(ZZ)Y′ spectrum with the Z(X′X′)Z polarization spectrum in a normal backscattering, we were able to assign most of A1 and E-symmetry normal modes of R3c BFO. In addition, we found that there was a negligible LO-TO splitting in the A1-symmetry normal modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.