The problem of Call Admission Control and rate allocation in loosely coupled wireless integrated networks is investigated. The related Radio Resource Management schemes were introduced to improve network performance in wireless integrated networks. However, these schemes did not reflect the independence and competitiveness of loosely coupled wireless integrated networks. Furthermore, given that users have different requirements for price and Quality of Service (QoS), they are able to select a network according to their preference. We consider a scenario with two competitive wireless networks, namely Universal Mobile Telecommunications System cellular networks and Wireless Local Area Networks. Users generate two types of traffic with different QoS requirements: real-time and non-realtime. We propose a scheme that exploits a mathematical model for the control of call admission and adopt a noncooperative game theory-based approach to address the rate allocation problem. The purpose is to maximize the revenue of the network providers while guaranteeing a level of QoS according to user needs. Simulation results show that the proposed scheme provides better network performance with respect to packet loss rate, packet delay time, and callblocking probability than other schemes when the data rates are allocated to each call at the point that maximizes the revenue of network providers. We further demonstrate that a Nash equilibrium always exists for the considered games.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.