Walk training with blood flow occlusion (OCC-walk) leads to muscle hypertrophy; however, cardiorespiratory endurance in response to OCC-walk is unknown. Ischemia enhances the adaptation to endurance training such as increased maximal oxygen uptake (VO₂(max)) and muscle glycogen content. Thus, we investigated the effects of an OCC-walk on cardiorespiratory endurance, anaerobic power, and muscle strength in elite athletes. College basketball players participated in walk training with (n = 7) and without (n = 5) blood flow occlusion. Five sets of a 3-min walk (4-6 km/h at 5% grade) and a 1-min rest between the walks were performed twice a day, 6 days a week for 2 weeks. Two-way ANOVA with repeated measures (groups x time) was utilized (P < 0.05). Interactions were found in VO₂(max) (P = 0.011) and maximal minute ventilation (VE(max); P = 0.019). VO₂(max) (11.6%) and VE(max) (10.6%) were increased following the OCC-walk. For the cardiovascular adaptations of the OCC-walk, hemodynamic parameters such as stroke volume (SV) and heart rate (HR) at rest and during OCC-walk were compared between the first and the last OCC-walk sessions. Although no change in hemodynamics was found at rest, during the last OCC-walk session SV was increased in all five sets (21.4%) and HR was decreased in the third (12.3%) and fifth (15.0%) sets. With anaerobic power an interaction was found in anaerobic capacity (P = 0.038) but not in peak power. Anaerobic capacity (2.5%) was increased following the OCC-walk. No interaction was found in muscle strength. In conclusion, the 2-week OCC-walk significantly increases VO₂(max) and VE(max) in athletes. The OCC-walk training might be used in the rehabilitation for athletes who intend to maintain or improve endurance.
The heart is an unusual site of metastasis from any malignancy. We report a case of cardiac metastasis from colorectal cancer. A 70-year-old woman was referred with a presumptive diagnosis of sigmoid colon cancer with cardiac myxoma. Two-dimensional echocardiography showed a 4 cm × 4.5 cm mobile mass on the lateral right atrial wall, and computed tomography revealed a low attenuated lobulating mass in the right atrium. The patient underwent anterior resection for sigmoid colon cancer (T4N2). Thereafter, she experienced progressive shortness of breath. Therefore, a cardiac operation was performed 2 wk after the colorectal operation. Histological examination revealed adenocarcinoma, which was identical to the primary lesion. Although twodimensional echocardiography has become the diagnostic test of choice for detecting cardiac tumors, in patients with colorectal cancer showing a cardiac mass, further diagnostic evaluation such as a magnetic resonance imaging might be necessary.
While acute treatment with beetroot juice (BRJ) containing nitrate (NO3 (-)) can lower systolic blood pressure (SBP), afterload, and myocardial O2 demand during submaximal exercise, effects of chronic supplementation with BRJ (containing a relatively low dose of NO3 (-), 400 mg) on cardiac output (CO), SBP, total peripheral resistance (TPR), and the work of the heart in response to dynamic exercise are not known. Thus, in 14 healthy males (22 ± 1 yr), we compared effects of 15 days of both BRJ and nitrate-depleted beetroot juice (NDBRJ) supplementation on plasma concentrations of NOx (NO3 (-)/NO2 (-)), SBP, diastolic blood pressure (DBP), mean arterial pressure (MAP), CO, TPR, and rate pressure product (RPP) at rest and during progressive cycling exercise. Endothelial function was also assessed via flow-mediated dilation (FMD). BRJ supplementation increased plasma NOx from 83.8 ± 13.8 to 167.6 ± 13.2 μM. Compared with NDBRJ, BRJ reduced SBP, DBP, MAP, and TPR at rest and during exercise (P < 0.05). In addition, RPP was decreased during exercise, while CO was increased, but only at rest and the 30% workload (P < 0.05). BRJ enhanced FMD-induced increases in brachial artery diameter (pre: 12.3 ± 1.6%; post: 17.8 ± 1.9%). We conclude that 1) chronic supplementation with BRJ lowers blood pressure and vascular resistance at rest and during exercise and attenuates RPP during exercise and 2) these effects may be due, in part, to enhanced endothelium-induced vasodilation in contracting skeletal muscle. Findings suggest that BRJ can act as a dietary nutraceutical capable of enhancing O2 delivery and reducing work of the heart, such that exercise can be performed at a given workload for a longer period of time before the onset of fatigue.
This study investigated the hemodynamic mechanisms underlying the exaggerated blood pressure response to muscle contraction in prehypertensive humans and the potential role of skeletal muscle metabo- and mechanoreceptors in this response. To accomplish this, changes in peak mean arterial blood pressure (ΔMAP), cardiac output, and total peripheral resistance (ΔTPR) were compared between prehypertensive (n = 23) and normotensive (n = 19) male subjects during 2 min of static contraction (at 50% of maximal tension), 2 min of postexercise muscle ischemia (metaboreflex), and 1 min of passive dorsiflexion of the foot (tendon stretch, mechanoreceptor reflex). These variables were assessed before and during the interventions. Percentage increases from baseline in MAP and TPR in response to the exercise pressor reflex were augmented in the prehypertensives, compared with the normotensives (44% ± 5% vs. 33% ± 4% and 34% ± 15% vs. 2% ± 8%, respectively) (p < 0.05). Metaboreflex-induced increases in MAP and TPR were also augmented in the prehypertensives (28% ± 5% vs. 14% ± 4% and 36% ± 12% vs. 14% ± 9%, respectively) (p < 0.05). In response to the mechanoreflex, no differences in the percentage increase in MAP or TPR were seen between groups. The results indicate that the reflex pressor response to static contraction is augmented in prehypertension and suggest that this phenomenon is due, at least in part, to enhanced activation of metaboreceptors.
This study determined whether an elevated muscle metaboreflex contributes to the excessive blood pressure response to exercise in postmenopausal women. Thirty healthy female volunteers were studied (15 postmenopausal and 15 premenopausal). Stroke volume, heart rate, cardiac output (CO), systolic blood pressure, diastolic blood pressure, and total vascular conductance (TVC) were continuously assessed throughout the experiment. To activate the muscle metaboreflex, occlusion of the vasculature was induced via inflation of a blood pressure cuff (2 min) on the upper arm following static handgrip exercise. Muscle metaboreflex activation increased mean arterial pressure (MAP) in both groups. However, this pressor response was greater in the postmenopausal women (ΔMAP: 21.4 ± 3 vs. 14.5 ± 2 mmHg) (P < 0.05) even though the corresponding increase in CO was less (ΔCO: 0.0 ± 0.2 vs. 0.3 ± 0.2 l/min) (P < 0.05). TVC decreased in both the groups but was more pronounced in the postmenopausal group (ΔTVC: -10.7 ± 2.6 vs. -17.1 ± 3.6 ml/min/mmHg) (P < 0.05). In conclusion, the exaggerated blood pressure response to exercise in postmenopausal women is mediated, in part, by an overactive metaboreflex that is associated with enhanced peripheral vasoconstriction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.