Dipeptidyl peptidase (DPP)-IV inhibitors are a new approach to the treatment of type 2 diabetes. DPP-IV is a member of a family of serine peptidases that includes quiescent cell proline dipeptidase (QPP), DPP8, and DPP9; DPP-IV is a key regulator of incretin hormones, but the functions of other family members are unknown. To determine the importance of selective DPP-IV inhibition for the treatment of diabetes, we tested selective inhibitors of DPP-IV, DPP8/DPP9, or QPP in 2-week rat toxicity studies and in acute dog tolerability studies. In rats, the DPP8/9 inhibitor produced alopecia, thrombocytopenia, reticulocytopenia, enlarged spleen, multiorgan histopathological changes, and mortality. In dogs, the DPP8/9 inhibitor produced gastrointestinal toxicity. The QPP inhibitor produced reticulocytopenia in rats only, and no toxicities were noted in either species for the selective DPP-IV inhibitor. The DPP8/9 inhibitor was also shown to attenuate T-cell activation in human in vitro models; a selective DPP-IV inhibitor was inactive in these assays. Moreover, we found DPP-IV inhibitors that were previously reported to be active in models of immune function to be more potent inhibitors of DPP8/9. These results suggest that assessment of selectivity of potential clinical candidates may be important to an optimal safety profile for this new class of antihyperglycemic agents. Diabetes
Activation of  3 adrenergic receptors on the surface of adipocytes leads to increases in intracellular cAMP and stimulation of lipolysis. In brown adipose tissue, this serves to upregulate and activate the mitochondrial uncoupling protein 1, which mediates a proton conductance pathway that uncouples oxidative phosphorylation, leading to a net increase in energy expenditure. While chronic treatment with  3 agonists in nonprimate species leads to uncoupling protein 1 up-regulation and weight loss, the relevance of this mechanism to energy metabolism in primates, which have much lower levels of brown adipose tissue, has been questioned. With the discovery of L-755,507, a potent and selective partial agonist for both human and rhesus  3 receptors, we now demonstrate that acute exposure of rhesus monkeys to a  3 agonist elicits lipolysis and metabolic rate elevation, and that chronic exposure increases uncoupling protein 1 expression in rhesus brown adipose tissue. These data suggest a role for  3 agonists in the treatment of human obesity.
The opsin shift, the difference in wavenumber between the absorption peak of a visual pigment and the protonated Schiff base of the chromophore, represents the influence of the opsin binding site on the chromophore. The opsin shift for the chicken cone pigment iodopsin is much larger than that for rhodopsin. To understand the origin of this opsin shift and the mechanism of wavelength regulation in iodopsin, a series of synthetic 9-cis and 11-cis dehydro- and dihydro-retinals was used to regenerate iodopsin-based pigments. The opsin shifts of these pigments are quite similar to those found in bacteriorhodopsin-based artificial pigments. On the basis of these studies, a tentative model of wavelength regulation in iodopsin is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.