E3 ubiquitin ligases, which bind protein targets, leading
to their
ubiquitination and subsequent degradation, are attractive drug targets
due to their exquisite substrate specificity. However, the development
of small-molecule inhibitors has proven extraordinarily challenging
as modulation of E3 ligase activities requires the targeting of protein–protein
interactions. Using rational design, we have generated the first small
molecule targeting the von Hippel–Lindau protein (VHL), the
substrate recognition subunit of an E3 ligase, and an important target
in cancer, chronic anemia, and ischemia. We have also obtained the
crystal structure of VHL bound to our most potent inhibitor, confirming
that the compound mimics the binding mode of the transcription factor
HIF-1α, a substrate of VHL. These results have the potential
to guide future development of improved lead compounds as therapeutics
for the treatment of chronic anemia and ischemia.
We have developed a heterobifunctional all-small molecule PROTAC (PROteolysis TArgeting Chimera) capable of inducing proteasomal degradation of the androgen receptor. This cell-permeable PROTAC consists of a non-steroidal androgen receptor ligand (SARM) and the MDM2 ligand known as nutlin, connected by a PEG-based linker. The SARM-nutlin PROTAC recruits the androgen receptor to MDM2, which functions as an E3 ubiquitin ligase. This leads to the ubiquitination of the androgen receptor, and its subsequent degradation by the proteasome. Upon treatment of HeLa cells with 10 μM PROTAC for 7h, we were able to observe a decrease in androgen receptor levels. This degradation is proteasome dependent, as it is mitigated in cells pre-treated with 10 μM epoxomicin, a specific protease inhibitor. These results have implications for the potential study and treatment of various cancers with increased androgen receptor levels.
The ability to regulate any protein of interest in living systems with small molecules remains a challenge. We hypothesized that appending a hydrophobic moiety to the surface of a protein would mimic the partially denatured state of the protein, thus engaging the cellular quality control machinery to induce its proteasomal degradation. We designed and synthesized bifunctional small molecules that bind a bacterial dehalogenase (HaloTag protein) and present a hydrophobic group on its surface. Remarkably, hydrophobic tagging of the HaloTag protein with an adamantyl moiety induced the degradation of cytosolic, isoprenylated, and transmembrane fusion proteins in cell culture. We demonstrated the in vivo utility of hydrophobic tagging by degrading proteins expressed in zebrafish embryos and by inhibiting RasG12V-driven tumor progression in mice. Therefore, hydrophobic tagging of HaloTag fusion proteins affords small molecule control over any protein of interest, making it an ideal system for validating potential drug targets in disease models.
E3 ubiquitin ligases, such as the therapeutically relevant VHL, are challenging targets for traditional medicinal chemistry, as their modulation requires targeting protein-protein interactions. We report novel small-molecule inhibitors of the interaction between VHL and its molecular target HIF1α, a transcription factor involved in oxygen sensing.
Her3 (ErbB3) belongs to the epidermal growth factor receptor tyrosine kinases and is well credentialed as an anti-cancer target but is thought to be “undruggable” using ATP-competitive small molecules because it lacks significant kinase activity. Here we report the first selective Her3 ligand, TX1-85-1, that forms a covalent bond with Cys721 located in the ATP-binding site of Her3. We demonstrate that covalent modification of Her3 inhibits Her3 signaling but not proliferation in some Her3 dependent cancer cell lines. Subsequent derivatization with a hydrophobic adamantane moiety demonstrates that the resultant bivalent ligand (TX2-121-1) enhances inhibition of Her3 dependent signaling. Treatment of cells with TX2-121-1 results in partial degradation of Her3 and serendipitously interferes with productive heterodimerization between Her3 with either Her2 or c-Met. These results suggest that small molecules will be capable of perturbing the biological function of Her3 and the approximately 60 other pseudokinases found in human cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.