A grid connected inverter usually requires voltage and current measurements to control the active and reactive powers as well as the inverter output currents. While voltage sensors are essential to obtain reliable information on the phase angle, these additional components certainly increase the production costs and complexity. In this paper, a voltage-sensorless control scheme for a grid connected inverter using a disturbance observer (DOB) is presented. The grid voltages are estimated by DOB in the stationary reference frame using the current measurements and reference signals. Even though the DOB estimates the grid voltages with reasonable accuracy in the presence of the uncertainty such as the unbalanced condition and harmonic distortion, the resultant waveform shows a phase lag depending on the estimation bandwidth. To overcome this limitation, a phase lead compensation is introduced. By using these techniques, the phase angle of grid voltages can be completely restored even if the phase angle of grid is initially unknown. The proposed scheme is simple and straightforward. In addition, it does not require any additional hardware. The feasibility of the proposed voltage-sensorless control scheme is demonstrated through simulations and experiments using 2 kVA prototype inverter.
A power quality improvement scheme for grid connected inverters, even in the presence of the disturbances in grid voltages due to harmonic distortions and three-phase imbalance, is presented for distributed generation (DG) power systems. The control objective is to force the inverter currents to follow their references with robustness even under external disturbances in grid voltages. The proposed scheme is realized by a disturbance observer (DOB) based current control scheme. Since the uncertainty in a system can be effectively canceled out using an estimated disturbance by the DOB, the resultant system behaves like a closed-loop system consisting of a disturbance-free nominal model. For experimental verification, a 2 kVA laboratory prototype of a grid connected inverter has been built using a digital signal processor (DSP) TMS320F28335. Through comparative simulations and experimental results under grid disturbances such as harmonic distortion and imbalance, the effectiveness of the proposed DOB based current control scheme is demonstrated.
In distributed generation systems, a grid-connected inverter should operate with synchronization to grid voltage. Considering that synchronization requires the phase angle of grid voltage, a phase locked loop (PLL) scheme is often used. The synchronous reference frame phase locked loop (SRF-PLL) is generally known to provide reasonable performance under ideal grid voltage. However, this scheme indicates performance degradation under the harmonic distorted or unbalanced grid voltage condition. To overcome this limitation, this paper proposes a phase and harmonic detection method of grid voltage using fast Fourier transform (FFT). To reduce the calculation time of FFT algorithm, minimum sampling data is taken from the voltage measurement to determine the phase angle and the magnitude of harmonic components. An experimental test setup for a grid-connected inverter system has been constructed. By comparative simulations and experiments under various abnormal grid voltage conditions, the proposed scheme has been proven to effectively track the phase angle of the grid voltage.
To maintain the synchronization between the inverter voltages with grid under distorted grid voltage condition, an improved phase-locked loop (PLL) method using the fast Fourier transform (FFT) algorithm with minimum sampling data is proposed in this paper. The proposed algorithm calculates the phase angle and the magnitude of harmonic components accurately under the balanced three phases grid voltage. Even if the grid voltage is distorted by harmonics or three phase voltages are unbalanced, the proposed scheme can effectively track the phase angle of grid voltage and calculate the magnitude of harmonic components perfectly within half period of grid voltage.
This study proposes a grid voltage estimation scheme without a phase delay in the voltage-sensorless control of a grid-connected inverter to enhance its economic feasibility, such as manufacturing cost and system complexity. The proposed scheme estimates grid voltages using a disturbance observer (DOB)-based current controller to control the grid-connected inverter without grid-side voltage sensors. The proposed voltage-sensorless control scheme can be applied successfully to grid-connected inverters, which should be operated with synchronization to the grid, considering the phase angle of the grid can be effectively detected through estimating the grid voltages by DOB. However, a problem associated with the phase delay in estimated grid voltages remains because the DOB has dynamic behavior similar to low-pass filter. Hence, the estimated grid voltages are compensated by a phase lead compensator to overcome the limitation. The effectiveness of the proposed control and estimation schemes is proven through simulations and experiments using a 2 kVA prototype inverter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.