Long-term depression (LTD) at parallel fibre-Purkinje cell synapse of the cerebellum is thought to be a cellular substrate for motor learning. LTD requires activation of metabotropic glutamate receptor subtype 1 (mGluR1) and its downstream signalling pathways, which invariably involves phospholipase Cbetas (PLCbetas). PLCbetas consist of four isoforms (PLCbeta1-4) among which PLCbeta4 is the major isoform in most Purkinje cells in the rostral cerebellum (lobule 1 to the rostral half of lobule 6). We studied mutant mice deficient in PLCbeta4, and found that LTD was deficient in the rostral but not in the caudal cerebellum of the mutant. Basic properties of parallel fibre-Purkinje cell synapses and voltage-gated Ca2+ channel currents appeared normal. The mGluR1-mediated Ca2+ release induced by repetitive parallel fibre stimulation was absent in the rostral cerebellum of the mutant, suggesting that their LTD lesion was due to the defect in the mGluR1-mediated signalling in Purkinje cells. Importantly, the eyeblink conditioning, a simple form of discrete motor learning, was severely impaired in PLCbeta4 mutant mice. Wild-type mice developed the conditioned eyeblink response, when pairs of the conditioned stimulus (tone) and the unconditioned stimulus (periorbital shock) were repeatedly applied. In contrast, PLCbeta4 mutant mice could not learn the association between the conditioned and unconditioned stimuli, although their behavioural responses to the tone or to the periorbital shock appeared normal. These results strongly suggest that PLCbeta4 is essential for LTD in the rostral cerebellum, which may be required for the acuisition of the conditioned eyeblink response.
Zebrafish regenerate damaged myocardial tissue very effectively. Hence, insights into the molecular networks underlying zebrafish heart regeneration might help develop alternative strategies to restore human cardiac performance. While TGF-β signaling has been implicated in zebrafish cardiac regeneration, the role of its individual ligands remains unclear. Here, we report the opposing expression response during zebrafish heart regeneration of two genes, mstnb and inhbaa, which encode TGF-β family ligands. Using gain-of-function (GOF) and loss-of-function (LOF) approaches, we show that these ligands mediate inverse effects on cardiac regeneration and specifically on cardiomyocyte (CM) proliferation. Notably, we find that Inhbaa functions as a CM mitogen and that its overexpression leads to accelerated cardiac recovery and scar clearance after injury. In contrast, mstnb GOF and inhbaa LOF both lead to unresolved scarring after cardiac injury. We further show that Mstnb and Inhbaa inversely control Smad2 and Smad3 transcription factor activities through alternate Activin type 2 receptors.
Pax6 is a transcriptional activator that contains two DNA binding domains and a potent transcription activation domain in the C terminus, which regulates organogenesis of the eye, nose, pancreas, and central nervous system. Homeodomain-interacting protein kinase 2 (HIPK2) interacts with transcription factors, including homeoproteins, and regulates activities of transcription factors. Here we show that HIPK2 phosphorylates the activation domain of Pax6, which augments Pax6 transactivation by enhancing its interaction with p300. Mass spectrometric analysis identified three Pax6 phosphorylation sites as threonines 281, 304, and 373. The substitutions of these threonines with alanines decreased Pax6 transactivation, whereas substitutions to glutamic acids increased transactivation in mimicry of phosphorylation. Furthermore, the knock-down of either endogenous or exogenous HIPK2 expression with HIPK2 shRNA markedly inhibited Pax6 phosphorylation and its transactivating function on proglucagon promoter in cultured cells. These results strongly indicate that HIPK2 is an upstream protein kinase for Pax6 and suggest that it modulates Pax6-mediated transcriptional regulation.
Gangliosides abundant in the nervous system have been implicated in a broad range of biological functions, including the regulation of cell proliferation and death. Glutamate-induced cell death, which is accompanied by an accumulation of reactive oxygen species (ROS), is a major contributor to pathological cell death within the nervous system. However, the mechanism underlying this neuronal cell death has not been fully elucidated. In this study, we report that ganglioside GM3 is involved in neuronal cell death. GM3 was up-regulated in the mouse hippocampal cell line HT22 death caused by glutamate. Increment in GM3 levels by both the exogenous addition of GM3 and the overexpression of the GM3 synthase gene induced neuronal cell death. Overexpression of GM3 synthase by microinjecting mRNA into zebrafish embryos resulted in neuronal cell death in the central nervous system (CNS). Conversely, RNA interference-mediated silencing of GM3 synthase rescued glutamate-induced neuronal death, as evidenced by the inhibition of massive ROS production and intracellular calcium ion influx. 12-lipoxygenase (12-lipoxygenase) (12-LOX) was recruited to glycosphingolipid-enriched microdomains (GEM) in a GM3-dependent manner during oxidative glutamate toxicity. Our findings suggest that GM3 acts as not only a mediator of oxidative HT22 death by glutamate but also a modulator of in vivo neuronal cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.