The aim of this study was searching anti-glycation, carbonyl trapping and anti-inflammatory activities of chrysin derivatives. The inhibitory effect of chrysin on advanced glycation end-products (AGEs) was investigated by trapping methylglyoxal (MGO), and MGO-conjugated adducts of chrysin were analyzed using LC-MS/MS. The mono- or di-MGO-conjugated adducts of chrysin were present at 63.86 and 29.69% upon 48 h of incubation at a chrysin:MGO ratio of 1:10. The MGO adducted positions on chrysin were at carbon 6 or 6 & 8 in the A ring by classic aldol condensation. To provide applicable knowledge for developing chrysin derivatives as AGE inhibitors, we synthesized several O-alkyl or ester derivatives of chrysin and compared their AGE formation inhibitory, anti-inflammatory, and water solubility characteristics. The results showed that 5,7-di-O-acetylchrysin possessed higher AGE inhibitory and water solubility qualities than original chrysin, and retained the anti-inflammation activity. These results suggested that 5,7-di-O-acetylchrysin could be a potent functional food ingredient as an AGE inhibitor and anti-inflammatory agent, and promotes the development of the use of chrysin in functional foods.
We previously reported that Lepechinia meyenii (Walp.) Epling has antioxidant and aldose reductase (AR) inhibitory activities. In this study, L. meyenii was extracted in a 50% MeOH and CH2Cl2/MeOH system. The active extracts of MeOH and 50% MeOH were subjected to fractionation, followed by separation using high-speed counter-current chromatography (HSCCC) and preparative HPLC. Separation and identification revealed the presence of caffeic acid, hesperidin, rosmarinic acid, diosmin, methyl rosmarinate, diosmetin, and butyl rosmarinate. Of these, rosmarinic acid, methyl rosmarinate, and butyl rosmarinate possessed remarkable antioxidant and AR inhibitory activities. The other compounds were less active. In particular, rosmarinic acid is the key contributor to the antioxidant and AR inhibitory activities of L. meyenii; it is rich in the MeOH extract (333.84 mg/g) and 50% MeOH extract (135.41 mg/g) of L. meyenii and is especially abundant in the EtOAc and n-BuOH fractions (373.71–804.07 mg/g) of the MeOH and 50% MeOH extracts. The results clarified the basis of antioxidant and AR inhibitory activity of L. meyenii, adding scientific evidence supporting its traditional use as an anti-diabetic herbal medicine. The HSCCC separation method established in this study can be used for the preparative separation of rosmarinic acid from natural products.
Essential oils are an important source of natural antioxidants and multiple methods have been established for evaluation of their overall antioxidant activity, however, the antioxidant activities of their compounds are less investigated. In the present study, the hyphenation of 2,2′-diphenyl-1-picrylhydrazyl (DPPH)-gas chromatography (GC)-mass spectrometry (MS) offline and high-speed countercurrent chromatography (HSCCC) is established for efficient screening, identification, and isolation of antioxidants from essential oils and applied to the essential oil of Curcuma wenyujin Y.H. Chen et C. Ling. Five compounds are preliminarily screened as antioxidants using DPPH-GC according to the reduction of GC peak areas of each compound after reaction with DPPH and then identified as eucalyptol (7.66%), camphor (2.34%), δ-elemene (1.15%), β-elemene (7.10%), and curzerene (15.77%) using GC-MS. Moreover, these five compounds are isolated by HSCCC using two solvent systems, n-hexane-acetonitrile-ethanol (5:3:2, v/v) and n-hexane-acetonitrile-acetone (4:3:1, v/v), and subjected to DPPH scavenging assay. Camphor, δ-elemene, and β-elemene show weak DPPH scavenging activity, while curzerene and eucalyptol show moderate DPPH scavenging activity. Notably, a significant synergistic effect on DPPH scavenging is found between curzerene and eucalyptol. The result demonstrated that off-line DPPH-GC-MS coupling CCC is an efficient method for screening, identification, and separation of antioxidant compounds in essential oil
Muehlenbeckia volcanica (Benth.) Endl. (M. volcanica), native to South America, is a traditional Peruvian medicinal plant that has multi-therapeutic properties; however, no phytochemicals have been identified from it yet. In this study, a five-step polarity-stepwise elution counter-current chromatography (CCC) was developed using methanol/water (1:5, v/v) as the stationary phase and different ratios of n-hexane, ethyl acetate, and n-butanol as mobile phases to separate the compounds from the 70% methanol extract of M. volcanica, by which six compounds with a wide range of polarities were separated in a single run of CCC and were identified as gallic acid, protocatechuic acid, 4,4′-dihydroxy-3,3′-imino-di-benzoic acid, rutin, quercitrin, and quercetin. Then, two compounds from the fractions of stepwise elution CCC were separated using conventional high-speed CCC, pH-zone-refining CCC, and preparative high-performance liquid chromatography, and identified as shikimic acid and miquelianin. These compounds are reported from M. volcanica for the first time. Notably, except for shikimic acid, all other compounds showed anti-diabetic potentials via antioxidant, antiglycation, and aldose reductase inhibition. The results suggest that the polarity-stepwise elution CCC can be used to efficiently separate or fractionate compounds with a wide range of polarities from natural products. Moreover, M. volcanica and its bioactive compounds are potent anti-diabetic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.