This paper studies the flow around a propeller rotating in the reverse direction in a uniform free stream. Large eddy simulation is used to study this massively separated flow at a Reynolds number of 480 000 and advance ratios $J= - 0. 5$, $- 0. 7$ and $- 1. 0$. Simulations are performed on two grids; statistics of the loads and velocity field around the propeller show encouraging agreement between the two grids and with experiment. The impact of advance ratio is discussed, and a physical picture of the unsteady flow and its influence on the propeller loads is proposed. An unsteady vortex ring is formed in the vicinity of the propeller disk due to the interaction between the free stream and the reverse flow produced by the reverse rotation. The flow is separated in the blade passages; the most prominent is the separation along the sharp edge of the blade on the downstream side of the blade. This separation results in high-amplitude, transient propeller loads. Conditional averaging is used to describe the statistically relevant events that determine low- and high-amplitude thrust and side-forces. The vortex ring is closer and the reverse flow induced by propeller rotation is lower when the loads are high. The propeller loads scale with $\rho {U}^{2} $ for $J\lt - 0. 7$ and with $\rho {n}^{2} {D}^{2} $ for $J\gt - 0. 7$.
Propeller crashback is an off-design operating condition where a propeller rotates in the reverse direction. Experiments (Bridges 2004, Tech Rep. MSSU-ASE-04-1, Department of Aerospace Engineering, Mississippi State University) have shown that the presence of an upstream hull significantly increases the side force on a propeller in crashback below an advance ratio of $J= \ensuremath{-} 0. 7$. Large-eddy simulation (LES) is performed for a propeller with and without a hull at two advance ratios, $J= \ensuremath{-} 1. 0$ and $J= \ensuremath{-} 0. 5$. LES reproduces the experimentally observed behaviour and shows good quantitative agreement. Time-averaged flow fields are investigated for a qualitative understanding of the complex flow resulting from the interaction of the upstream hull with the propeller blades. At $J= \ensuremath{-} 1. 0$, two noticeable flow features are found for the case with the hull – a recirculation zone upstream in the vicinity of the propeller and a vortex ring much closer to the propeller. In contrast, at $J= \ensuremath{-} 0. 5$, there is a much smaller recirculation zone which is further upstream due to the increased reverse flow. As a result, the hull does not make much difference in the immediate vicinity of the propeller at $J= \ensuremath{-} 0. 5$. For both advance ratios, side force is mainly generated from the leading-edge separation on the suction side. However, high levels of side force are also generated from trailing-edge separation on the suction side at $J= \ensuremath{-} 1. 0$.
Currently, the design of floating offshore wind systems is primarily based on mid-fidelity models with empirical drag forces. The tuning of the model coefficients requires data from either experiments or high-fidelity simulations. As part of the OC6 (Offshore Code Comparison Collaboration, Continued, with Correlation, and unCertainty (OC6) is a project under the International Energy Agency Wind Task 30 framework) project, the present investigation explores the latter option. A verification and validation study of computational fluid dynamics (CFD) models of the DeepCwind semisubmersible undergoing free-decay motion is performed. Several institutions provided CFD results for validation against the OC6 experimental campaign. The objective is to evaluate whether the CFD setups of the participants can provide valid estimates of the hydrodynamic damping coefficients needed by mid-fidelity models. The linear and quadratic damping coefficients and the equivalent damping ratio are chosen as metrics for validation. Large numerical uncertainties are estimated for the linear and quadratic damping coefficients; however, the equivalent damping ratios are more consistently predicted with lower uncertainty. Some difference is observed between the experimental and CFD surge-decay motion, which is caused by mechanical damping not considered in the simulations that likely originated from the mooring setup, including a Coulomb-friction-type force. Overall, the simulations and the experiment show reasonable agreement, thus demonstrating the feasibility of using CFD simulations to tune mid-fidelity models.
As Computational Fluid Dynamics (CFD) and High Performance Computing (HPC) technologies matured in many other industries, the offshore industry has begun to recognize CFD-based Numerical Wave Basin (NWB) as a design tool to evaluate offshore floater design more efficiently and with less uncertainty than the conventional ways relying on empirical methods. The recent NWB technology development has focused on the customization of CFD software for offshore design practices and validation of the developed analysis tools/procedures against physical model tests. Development has now extended to simulation of fully coupled hull-mooring-riser systems.Technology readiness of the NWB for field application is demonstrated for two benchmark problems: 1. Vortex-induced motion of a multi-column floater 2. Global performance of a multi-column floater in extreme wave environment The results indicates that the CFD-based numerical wave basin, although still computationally expensive, is technically ready to be a complementary tool to physical wave basin for offshore platform global performance design.
Vortex-Induced Motion (VIM), which occurs as a consequence of exposure to strong current such as Loop Current eddies in the Gulf of Mexico, is one of the critical factors in the design of the mooring and riser systems for deepwater offshore structures such as Spars and multi-column Deep Draft Floaters (DDFs). The VIM response can have a significant impact on the fatigue life of mooring and riser components. In particular, Steel Catenary Risers (SCRs) suspended from the floater can be sensitive to VIM-induced fatigue at their mudline touchdown points. Industry currently relies on scaled model testing to determine VIM for design. However, scaled model tests are limited in their ability to represent VIM for the full scale structure since they are generally not able to represent the full scale Reynolds number and also cannot fully represent waves effects, nonlinear mooring system behavior or sheared and unsteady currents. The use of Computational Fluid Dynamics (CFD) to simulate VIM can more realistically represent the full scale Reynolds number, waves effects, mooring system, and ocean currents than scaled physical model tests. This paper describes a set of VIM CFD simulations for a Spar hard tank with appurtenances and their comparison against a high quality scaled model test. The test data showed considerable sensitivity to heading angle relative to the incident flow as well as to reduced velocity. The simulated VIM-induced sway motion was compared against the model test data for different reduced velocities (Vm) and Spar headings. Agreement between CFD and model test VIM-induced sway motion was within 9% over the full range of Vm and headings. Use of the Improved Delayed Detached Eddy Simulation (IDDES, Shur et al 2008) turbulence model gives the best agreement with the model test measurements. Guidelines are provided for meshing and time step/solver setting selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.