In this study, we present a new numbering-up metal microreactor by integrating a flow distributor and a copper catalytic module for high productivity of a commercial synthetic drug.
We present a pressure-tolerant 3D parallel polyimide (PI) film microreactor operating at up to ~160 bars with direct 3D flow focusing geometry for mass production of PEG-PLGA nanoparticles in a ~10(1) gram-scale (g h(-1)).
The synthesis of pharmaceutical compounds via short-lived intermediates in a microreactor is attractive, because of the fast flow and high throughput. Additionally, intermediates can be utilized sequentially to efficiently build up a library in a short time. Here we present an integrated microfluidic synthesis of biologically active thioquinazolinone libraries. Generation of o-lithiophenyl isothiocyanate and subsequent reaction with aryl isocyanate is optimized by controlling the residence time in the microreactor to 16 ms at room temperature. Various S-benzylic thioquinazolinone derivatives are synthesized within 10 s in high yields (75-98%) at room temperature. These three-step reactions involve two organolithium intermediates, an isothiocyanate-functionalized aryllithium intermediate, and a subsequent lithium thiolate intermediate. We also demonstrate the gram-scale synthesis of a multifunctionalized thioquinazolinone in the microfluidic device with a high yield (91%) and productivity (1.25 g in 5 min).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.