Abstract. The gastric pathogen, helicobacter pylori (H. pylori), has been associated with the progression of gastric cancer. It was previously reported that H. pylori induced urokinase plasminogen activator receptor (uPAR) expression and stimulated cell invasiveness in human gastric cancer AGS cells. However, the precise mechanisms for how H. pylori upregulates uPAR are unclear. This study investigated the underlying signal pathways in H. pylori-induced uPAR in human gastric cancer AGS cells. The intracellular H 2 O 2 content, as determined using H 2 O 2 -sensitive probe 2',7'-dichlorodihydrofluorescein, increased after the H. pylori treatment. N-acetyl cysteine (NAC), an antioxidant, prevented the H. pylori-induced production of H 2 O 2 and uPAR expression. In addition, exogenous H 2 O 2 was found to increase uPAR mRNA expression and its promoter activity. Sitedirected mutagenesis of the potential NF-κB element in the uPAR promoter showed that the redox-sensitive transcription factor NF-κB was essential for H. pylori-induced uPAR expression. The expression of vectors encoding a mutatedtype NF-κB-inducing kinase and I-κB, and a specific inhibitor of NF-κB (BAY11-7082) decreased the H. pyloriinduced uPAR promoter activity. Chromatin immunoprecipitation and the electrophoretic mobility shift assay confirmed that H. pylori increased the DNA binding activity of NF-κB. With the aid of NAC and H 2 O 2 , it was determined that reactive oxygen species (ROS) is an upstream signaling molecule for activating the NF-κB induced by H. pylori. The enhanced AGS cell invasiveness by H. pylori was partially abrogated by an NAC and BAY11-7082 treatment. These results suggest that the ROS and NF-κB signaling pathway is important in H. pylori-induced uPAR expression and the increased cell invasiveness of human gastric cancer AGS cells.
More efficient isolation and identification of cancer stem cells (CSCs) would help in determining their fundamental roles in tumor biology. The classical tool for this purpose is anchorage-independent tumorsphere culture. We compared the effects of differently textured culture plates and serum deprivation on the acquisition of CSC properties of A172 glioblastoma cells. Cells were cultured on standard polystyrene-treated plates, ultra-low attachment, poly (2-hydroxyethyl methacrylate)-coated plates, and 1% agar-coated plates with 10% serum or in serum-free glioblastoma sphere medium (GBM). Based on mitochondrial reductase activity and subG1 proportions, non-adherent conditions had a greater impact on A172 cell viability than serum deprivation. Among the stemness-related genes, SOX-2 expression was significantly upregulated by serum deprivation under non-adherent conditions, while several epithelial-to-mesenchymal transition (EMT)-related genes were less dependent on serum. In addition, reactive oxygen species (ROS) accumulation in A172 cells was significantly increased in GBM under non-adherent conditions. Despite the correlation between SOX-2 induction and ROS accumulation, treatment with the ROS scavenger N-acetyl-l-cysteine did not prevent SOX-2 expression, suggesting that ROS accumulation is not an essential requirement for induction of SOX-2. Our results suggested that cultivation of cancer cells under conditions of serum deprivation in an anchorage-independent manner may enrich SOX-2-expressing CSC-like cells in vitro.
The Bis protein is known to be involved in a variety of cellular processes including apoptosis, migration, autophagy as well as protein quality control. Bis expression is induced in response to a number of types of stress, such as heat shock or a proteasome inhibitor via the activation of heat shock factor (HSF)1. We report herein that Bis expression is increased at the transcriptional level in HK-2 kidney tubular cells and A172 glioma cells by exposure to oxidative stress such as H2O2 treatment and oxygen-glucose deprivation, respectively. The pretreatment of HK-2 cells with N-acetyl cysteine, suppressed Bis induction. Furthermore, HSF1 silencing attenuated Bis expression that was induced by H2O2, accompaniedby increase in reactive oxygen species (ROS) accumulation. Using a series of deletion constructs of the bis gene promoter, two putative heat shock elements located in the proximal region of the bis gene promoter were found to be essential for the constitutive expression is as well as the inducible expression of Bis. Taken together, our results indicate that oxidative stress induces Bis expression at the transcriptional levels via activation of HSF1, which might confer an expansion of antioxidant capacity against pro-oxidant milieu. However, the possible role of the other cis-element in the induction of Bis remains to be determined.
Chungkookjang is a Korean fermented soybean containing microorganisms, proteinase, and diverse bioactive compounds, including a high concentration of isoflavones and peptides. Growth of breast cancer MCF7 cells decreased dependent on the concentration of fermented soybean extracts. The effect of fermented soybean on cellular gene expression was determined in a systematic manner comprehensively. DNA microarray analysis was performed using 25,804 probes. Ninety one genes whose expression levels were significantly changed were selected. TGFβI and Smad3 were upregulated. Downregulation of inflammation-related CSF2, CSF2RA, and CSF3 was found. Differential expression of chemokines CCL2, CCL3, CCL3L3, CXCL1, and CXCL2 were observed. Network analysis identified ERβ in the network. Based on the experimental results, taking fermented soybean might be helpful for preventing breast cancer by a mechanism activating TGFβ pathway and depressing inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.