Two experiments were conducted to evaluate the nutrient composition, in vitro dry matter disappearance (IVDMD) and organic matter disappearance (IVOMD) of three kinds of distillers grains (DG); i) wet distillers grains (WDG, KRW 25/kg), ii) dried distillers grains (DDG, KRW 280/kg), iii) dried distillers grains with solubles (DDGS, KRW 270/kg) produced from tapioca 70% and rice 30%, and to evaluate dietary effects of WDG on the performance of Hanwoo steers. In Exp. 1, twelve-WDG, four-DDG and one-DDGS were collected from seven ethanol plants. Average crude protein, crude fiber, neutral detergent fiber, and acid detergent fiber of WDG, DDG, and DDGS were: 32.6%, 17.8%, 57.5%, and 30.2% for WDG, 36.7%, 13.9%, 51.4%, and 30.5% for DDG, and 31.0%, 11.9%, 40.3%, and 21.2% for DDGS (DM basis), respectively. The DDGS had a higher quantity of water-soluble fraction than WDG and DDG and showed the highest IVDMD (p<0.05) in comparison to others during the whole experimental time. The IVDMD at 0 to 12 h incubation were higher (p<0.05) in DDG than WDG, but did not show significant differences from 24 to 72 h. The same tendency was observed in IVOMD, showing that DG made from tapioca and rice (7:3) can be used as a feed ingredient for ruminants. Considering the price, WDG is a more useful feed ingredient than DDG and DDGS. In Exp. 2, 36 Hanwoo steers of 21 months (495.1±91 kg) were randomly assigned to one of three dietary treatments for 85 days; i) Control (total mixed ration, TMR), ii) WDG 10% (TMR containing 10% of WDG, as fed basis), and iii) WDG 20% (TMR containing 20% of WDG, as fed basis). With respect to body weight and average daily gain, there were no differences between control and WDG treatments during the whole experimental period. Dry matter intake of control (9.34 kg), WDG 10% (9.21 kg) and 20% (8.86 kg) and feed conversion ratio of control (13.0), WDG 10% (13.2) and 20% (12.1) did not show differences between control and WDG treatments. Thus, the use of WDG up to 20% in TMR did not show any negative effect on the performance of Hanwoo steers.
In this study, two experiments were conducted to investigate the physicochemical characteristics (Exp. I) of bedding materials such as rice hulls (RH), sawdust (SD), wood shavings (WS) and sawdust+wood shavings (S+W; 1:1 in volume), and utilization of these beddings except RH (Exp. II) for rearing beef cattle. In Exp. I, the distribution of particle size (%) with 250 μm and below 250 μm was greater (p<0.05) in SD (30.4) than RH (4.4), WS (18.8) and S+W (20.1). Bulk density (kg/m3) of bedding materials was directly proportional to the percentage of 250 μm and below 250 μm particles, 178, 46, 112, and 88 for SD, WD, S+W and RH, respectively. Water absorption rate (%) after submersion in water for 24 h was higher (p<0.05) in WS (540.2) compared to SD (270.2), S+W (368.2). The S+W had an intermediate value of the absorption rate between SD and WS, but had an outstanding durability of water absorption capacity. Moisture evaporation rate (%) for 12 h was higher (p<0.05) in WS (75.4) than SD (70.5), S+W (72.2) and RH (57.8). Average ammonia emission (mg/m2/h) for 36 h was higher (p<0.05) in RH (3.15) than SD (1.70), WS (1.63), and S+W (1.73). In Exp. II, thirty six Hanwoo cows were allocated in 9 pens with one side on feed bunk side (Side A) and another side equipped with water supply (Side B) for 3 weeks with duplicated periods. Average moisture concentrations (%) of beddings were higher (p<0.05) in WS (side A, 65.7; side B, 57.9) than SD (side A, 62.5; side B, 52.2) and S+W (side A, 61.6; side B, 50.7). Regardless of types of beddings, moisture concentrations (%) of beddings within a pen were lower (p<0.05) at side B than A, implying longer period of utilization. These results suggest that using S+W would be a better choice than SD or WS alone, considering physicochemical characteristics and economics, and RH is not a suitable material as a bedding for beef cattle.
Two experiments were conducted to determine the nutrient composition, in vitro ruminal ammonia concentrations and pH of wet distillers grains (WDG, produced from tapioca 70% and rice 30%) and to evaluate dietary effects of fermented total mixed ration (TMR) using WDG on the performance, blood metabolites and carcass characteristics of Hanwoo steers from mid fattening to slaughter. In Exp. I, average dry matter (DM), crude protein, ether extract, crude fiber, ash, neutral detergent fiber, acid detergent fiber, and nitrogen free extract of seven WDG samples from an ethanol plant with different sampling dates were 19.9%, 24.8%, 3.8%, 21.8%, 8.87%, 60.3%, 34.5%, and 40.7% (DM basis), respectively. For in vitro ammonia concentrations and pH, each sample was assigned to 7 incubation times (0, 4, 8, 12, 24, 48, and 72 h). Linear increase was observed between 12 and 48 h for ammonia concentrations, but final ammonia concentrations (72 h) were not significantly different among WDG samples and fermentation patterns of WDG samples showed similar tendency. In vitro pH varied among treatments from 0 to 24 h, but were not different statistically after 48 h. In Exp. II, 45 Hanwoo steers of 23 months (641±123 kg) from mid fattening period to slaughter (248 days) were randomly divided into three groups of 15 pens each (five repetitions/each treatment) and assigned to one of three dietary treatments; i) Control (TMR), ii) WDG 15 (TMR containing 15% of WDG, as fed basis) and iii) WDG 28 (TMR containing 28% of WDG, as fed basis). The body weight (BW), ADG, and feed conversion ratio (FCR) of control and WDG 15 and 28 during 248 days were 760.8, 740.1, and 765.5 kg, and 0.50, 0.50, and 0.52 kg/d, and 18.6, 17.6, and 17.1, respectively. The dry matter intake (DMI) (kg/d) of control (9.11) was higher (p<0.05) than WDG treatments (WDG 15%, 8.57; 28%, 8.70). Nevertheless, DMI did not affect BW, ADG, and FCR of Hanwoo finishing steers. Blood metabolites were in normal ranges and were not different among treatments except the albumin concentration. In carcass characteristics, WDG 15 (30%) showed higher frequency of A-carcass yield grade than WDG 28 (15%) and control (7%), and WDG 28 (61%) showed higher frequency of 1++ and 1+-carcass quality grade than WDG 15 (40%) and control (60%). In conclusion, using WDG up to 28% in TMR did not show any negative effect on the performance and blood metabolites, and improved carcass quality of Hanwoo steers. Therefore, WDG can be a useful feed ingredient for Hanwoo steers in mid-fattening period to slaughter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.