Power-gating has been widely used to reduce subthreshold leakage current. However, the extent of leakage saving through power-gating diminishes with technology scaling due to gate leakage of data-retention circuit elements. Furthermore, power-gating involves substantial increase of area and wirelength. A circuit technique called supply switching with ground collapse (SSGC) has recently been proposed to overcome the limitation of power-gating. The circuit technique is successfully applied to the register file of ARM9 microprocessor in a 1.2 V, 65-nm CMOS process, and the measured result is reported for the first time. The leakage current is reduced by a factor of 960 on average of 83 dies at 25 C, and by a factor of 150 at 85 C. Compared to a register file implemented in conventional power-gating, leakage current is cut by a factor of 2.2, demonstrating that SSGC can be a substitute for power-gating in nanometer CMOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.