Histamine is a potent vasodilator that has been found to increase during exercise. We tested the hypothesis that histamine would attenuate blood pressure (BP), cardiac output (CO), and vascular resistance responses to short-term, submaximal dynamic exercise during H2 receptor blockade. Fourteen healthy men (20-29 years of age) were studied. Systolic (SBP), diastolic (DBP), and mean arterial (MAP) BP and heart rate (HR) were assessed at rest and during the last minute of 10 min of submaximal cycling exercise (60% of peak oxygen consumption) in the absence and presence of histamine H2 receptor blockade (ranitidine, 300 mg). Stroke volume (SV) (impedance cardiography) and plasma norepinephrine (NE) were measured, and CO, rate × pressure product (RPP), and total peripheral resistance (TPR) were calculated. Plasma levels of histamine were also measured. H2 blockade had no effects on any variables at rest. During exercise, SBP (184 ± 3 mm Hg vs. 166 ± 2 mm Hg), MAP (121 ± 2 mm Hg vs. 112 ± 5 mm Hg), and RPP (25.9 ± 0.8 × 10(3) mm Hg·beats/min vs. 23.5 ± 0.8 × 10(3) mm Hg/beats·min) were greater during blocked conditions (P < 0.05), and an interaction was observed for TPR. SV, DBP, HR, and NE levels were unaffected by blockade. Plasma histamine increased from 1.83 ± 0.14 ng/mL at rest to 2.33 ± 0.23 ng/mL during exercise (P < 0.05) and was not affected by H2 blockade (1.56 ± 0.23 ng/mL vs. 1.70 ± 0.24 ng/mL). These findings suggest that, during submaximal exercise, histamine attenuates BP, vascular resistance, and the work of the heart via activation of H2 receptors and that these effects occurred primarily in the vasculature and not in the myocardium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.