Microbial fuel cell (MFC) is an innovative environmental and energy system that converts organic wastewater into electrical energy. For practical implementation of MFC as a wastewater treatment process, a number of limitations need to be overcome. Improving cathodic performance is one of major challenges, and introduction of a current collector can be an easy and practical solution. In this study, three types of current collectors made of stainless steel (SS) were tested in a single-chamber cubic MFC. The three current collectors had different contact areas to the cathode (P 1.0 cm 2 ; PC 4.3 cm 2 ; PM 6.5 cm 2) and increasing the contacting area enhanced the power and current generations and coulombic and energy recoveries by mainly decreasing cathodic charge transfer impedance. Application of the SS mesh to the cathode (PM) improved maximum power density, optimum current density and maximum current density by 8.8%, 3.6% and 6.7%, respectively, comparing with P of no SS mesh. The SS mesh decreased cathodic polarization resistance by up to 16%, and cathodic charge transfer impedance by up to 39%, possibly because the SS mesh enhanced electron transport and oxygen reduction reaction. However, application of the SS mesh had little effect on ohmic impedance.
Electrode is a key component in a microbial electrolysis cell (MEC) and it needs significant improvement for practical implementation of MEC. For effective development of electrode technology, accurate and reproducible analytical methods are very important. Linear sweep voltammetry (LSV) is an essential analytical method for evaluating electrode performance; however, it has not been firmly established yet in the MEC field. In this study, biological brush (BB), abiotic brush (AB), Pt wire (PtW), stainless steel wire (SSW) and mesh (SSM)) were tested to explore the most suitable counter electrode in different medium conditions. Coefficient of variation (CV) for Imax of LSV were comparatively analyzed. In BB-anode LSV, SSW (0.48%) and SSM (2.17%) showed higher reproducibility as a counter electrode. In SSM-cathode LSV, BB (1.76%) and PtW (2.01%) produced more reproducible results. In the Ni-AC-SSM-cathode LSV, PtW (3.54%) and BB (8.81%) produced more reproducible result. It shows electrode used in the operation is an appropriate counter electrode in the acetate-added condition. However, in the absence of acetate, PtW (1.24%) and BB (1.71%) produced more reproducible results in SSM cathode and PtW (0.61%) and SSW (1.21%) did in the Ni-AC-SSM-cathode, showing PtW is an appropriate counter electrode. These results also shows that PtW is an appropriate counter electrode in cathode LSV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.