We investigated a nanotexturing process on the microtextured surface of single crystalline silicon solar cell by the reactive ion etching process in SF6/O2 mixed gas ambient. P-type Si wafer samples were prepared using a chemical wet etching process to address saw damage removal and achieve microtexturing. The microtextured wafers were further processed for nanotexturing by exposure to reactive ions within a circular tray of wafer carrier containing many small holes for uniform etching. As the dry etching times were increased to 2, 4 and finally to 8 min, surface structures were observed in a transition from nanoholes to nanorods, and a variation in wafer color from dark blue to black. The surface nanostructures showed a lowered photoreflectance and enhanced quantum efficiency within the visible light region with wavelengths of less than 679 nm. The nanohole structure etched for 2 min showed enhanced conversion efficiency when compared to the bare sample; however, the nanorod structure etched for 8 min exhibited the decreased efficiency with a reduced short circuit current, indicating that the surface nanostructural damage with the enlarged nanoperimetric surface area is sensitive to surface passivation from the surface recombination process.
We investigated solar cells containing temperature-dependent Ag nanodots embedded in an amorphous Si thin film layer by using hot-wire chemical vapor deposition in order to improve the properties of crystalline Si solar cells. An Ag thin film with a thickness of 10 nm was deposited by DC sputtering followed by annealing at various temperatures ranging from 250 to 850 degrees C for 15 min under N2 gas. As increasing the annealing temperature, the Ag nanodots were enlarged and the photoreflectances of the samples with Ag nanodots were lower than the reference samples in the spectral range of 200-600 nm, demonstrating the plasmon effect of Ag nanodots. The cell properties on photoluminescence spectra, quantum efficiency, and conversion efficiency were measured with the maximum values for the sample annealed at 450 degrees C, indicating that there exists an optimal size of the Ag nanodots about 15-35 nm to be effective on the enhancement of surface plasmon effect.
We fabricated crystalline Si solar cells with the inclusion of various Ag nanodots into the additional emitters of nanocrystallite Si thin films. The fabricated process was carried out on the emitter surface of p-n junction for the textured p-type wafer. The Ag thin films were deposited on emitter surfaces and annealed at various temperatures. The amorphous Si layers were also deposited on the Ag annealed surfaces by hot-wire chemical vapor deposition and then the deposited layers were doped by the second n-type doping process to form an additional emitter. From the characterization, both the Ag nanodots and the deposited amorphous Si thin films strongly reduce photo-reflectances in a spectral region between 200-400 nm. After embedding Ag nanodots in nanocrystallite Si thin films, a conversion efficiency of the sample with added emitter was achieved to 15.1%, which is higher than the 14.1% of the reference sample and the 14.7% of the de-posited sample with a-Si:H thin film after the Ag annealing process. The additional nanocrystallite emitter on crystalline Si with Ag nanodots enhances cell properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.