The gut microbiota is a contributing factor in obesity-related metabolic disorders. The effect of metformin on the gut microbiota has been reported; however, the relationship between the gut microbiota and the mechanism of action of metformin in elderly individuals is unclear. In this study, the effect of metformin on the gut microbiota was investigated in aged obese mice. The abundance of the genera Akkermansia, Bacteroides, Butyricimonas, and Parabacteroides was significantly increased by metformin in mice fed a high-fat diet. Metformin treatment decreased the expression of IL-1β and IL-6 in epididymal fat, which was correlated with the abundance of various bacterial genera. In addition, both fecal microbiota transplantation from metformin-treated mice and extracellular vesicles of Akkermansia muciniphila improved the body weight and lipid profiles of the mice. Our findings suggest that modulation of the gut microbiota by metformin results in metabolic improvements in aged mice, and that these effects are associated with inflammatory immune responses.
Dysbiosis of the gut microbiota is a contributing factor for obesity-related metabolic diseases such as hyperglycemia and hyperlipidemia. Pharmacotherapy for metabolic diseases involves the modulation of gut microbiota, which is suggested to be a potential therapeutic target. In this study, the modulation of gut microbiota by statins (cholesterol-lowering drugs: atorvastatin and rosuvastatin) was investigated in an aged mouse model of high-fat diet-induced obesity, and the association between gut microbiota and immune responses was described. Atorvastatin and rosuvastatin significantly increased the abundance of the genera Bacteroides, Butyricimonas, and Mucispirillum. Moreover, the abundance of these genera was correlated with the inflammatory response, including levels of IL-1β and TGFβ1 in the ileum. In addition, oral fecal microbiota transplantation with fecal material collected from rosuvastatin-treated mouse groups improved hyperglycemia. From these results, the effect of statins on metabolic improvements could be explained by altered gut microbiota. Our findings suggest that the modulation of gut microbiota by statins has an important role in the therapeutic actions of these drugs.
BackgroundCordyceps militaris has been used in traditional medicine to treat numerous diseases and has been reported to possess both antitumor and immunomodulatory activities in vitro and in vivo. However, the pharmacological and biochemical mechanisms of Cordyceps militaris extract (CME) on macrophages have not been clearly elucidated. In the present study, we examined how CME induces the production of proinflammatory cytokines, transcription factor, and the expression of co-stimulatory molecules.MethodsWe confirmed the mRNA and protein levels of proinflammatory cytokines through RT-PCR and western blot analysis, followed by a FACS analysis for surface molecules.ResultsCME dose dependently increased the production of NO and proinflammatory cytokines such as IL-1β, IL-6, TNF-α, and PGE2, and it induced the protein levels of iNOS, COX-2, and proinflammatory cytokines in a concentration-dependent manner, as determined by western blot and RT-PCR analysis, respectively. The expression of co-stimulatory molecules such as ICAM-1, B7-1, and B7-2 was also enhanced by CME. Furthermore, the activation of the nuclear transcription factor, NF-κB in macrophages was stimulated by CME.ConclusionBased on these observations, CME increased proinflammatory cytokines through the activation of NF-κB, further suggesting that CME may prove useful as an immune-enhancing agent in the treatment of immunological disease.
BackgroundMetabolic disorders, including type II diabetes and obesity, present major health risks in industrialized countries. AMP-activated protein kinase (AMPK) has become the focus of a great deal of attention as a novel therapeutic target for the treatment of metabolic syndromes. In this study, we evaluated whether dietary aloe could reduce obesity-induced inflammation and adipogenesis.MethodsMale C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation.ResultsAloe QDM complex down-regulated fat size through suppressed expression of scavenger receptors on adipose tissue macrophages (ATMs) compared with HFD. Both white adipose tissue (WATs) and muscle exhibited increased AMPK activation through aloe supplementation, and in particular, the Aloe QDM complex. Obesity-induced inflammatory cytokines (IL-1β and -6) and HIF1α mRNA and protein were decreased markedly, as was macrophage infiltration by the Aloe QDM complex. Further, the Aloe QDM complex decreased the translocation of NF-κB p65 from the cytosol in the WAT.ConclusionDietary aloe formula reduced obesity-induced inflammatory responses by activation of AMPK in muscle and suppression of proinflammatory cytokines in the WAT. Additionally, the expression of scavenger receptors in the ATM and activation of AMPK in WAT led to reduction in the percent of body fat. Thus, we suggest that the effect of the Aloe QDM complex in the WAT and muscle are related to activation of AMPK and its use as a nutritional intervention against T2D and obesity-related inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.