The gut microbiota is a contributing factor in obesity-related metabolic disorders. The effect of metformin on the gut microbiota has been reported; however, the relationship between the gut microbiota and the mechanism of action of metformin in elderly individuals is unclear. In this study, the effect of metformin on the gut microbiota was investigated in aged obese mice. The abundance of the genera Akkermansia, Bacteroides, Butyricimonas, and Parabacteroides was significantly increased by metformin in mice fed a high-fat diet. Metformin treatment decreased the expression of IL-1β and IL-6 in epididymal fat, which was correlated with the abundance of various bacterial genera. In addition, both fecal microbiota transplantation from metformin-treated mice and extracellular vesicles of Akkermansia muciniphila improved the body weight and lipid profiles of the mice. Our findings suggest that modulation of the gut microbiota by metformin results in metabolic improvements in aged mice, and that these effects are associated with inflammatory immune responses.
Dysbiosis of the gut microbiota is a contributing factor for obesity-related metabolic diseases such as hyperglycemia and hyperlipidemia. Pharmacotherapy for metabolic diseases involves the modulation of gut microbiota, which is suggested to be a potential therapeutic target. In this study, the modulation of gut microbiota by statins (cholesterol-lowering drugs: atorvastatin and rosuvastatin) was investigated in an aged mouse model of high-fat diet-induced obesity, and the association between gut microbiota and immune responses was described. Atorvastatin and rosuvastatin significantly increased the abundance of the genera Bacteroides, Butyricimonas, and Mucispirillum. Moreover, the abundance of these genera was correlated with the inflammatory response, including levels of IL-1β and TGFβ1 in the ileum. In addition, oral fecal microbiota transplantation with fecal material collected from rosuvastatin-treated mouse groups improved hyperglycemia. From these results, the effect of statins on metabolic improvements could be explained by altered gut microbiota. Our findings suggest that the modulation of gut microbiota by statins has an important role in the therapeutic actions of these drugs.
IL-18 is a crucial pro-inflammatory cytokine that mediates chronic intestinal inflammation. Metformin, an anti-diabetic drug, was reported to have ameliorative effects on inflammatory bowel disease. Recently, the mechanism of action of metformin was explained as a modulation of gut microbiota. In this study, fecal microbiota transplantation (FMT) using fecal material from metformin-treated mice was found to upregulate the expression of GLP-1 and pattern-recognition receptors TLR1 and TLR4 for the improvement in hyperglycemia caused by a high-fat diet. Further, FMT downregulated the expression of the inflammatory cytokine IL-18. Within the genera
Akkermansia
,
Bacteroides
, and
Butyricimonas
, which were promoted by metformin therapy,
Butyricimonas
was found to be consistently abundant following FMT. Our findings suggest that modulation of gut microbiota is a key factor for the anti-inflammatory effects of metformin which is used for the treatment of hyperglycemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.