This letter discusses the implementation of a low-voltage, low-power delta-sigma modulator as a sensing stage for biomedical applications. A distributed feedforward structure and bulk-driven operational transconductance amplifier are used in order to achieve efficient operation at a supply voltage of 0.8 V. Instead of conventional low-voltage amplifier architectures, our design uses folded-cascode amplifiers, although they are not used in most low-voltage circuits. A wide input swing is achieved by using the bulk-driven approach, and the drawback of the limited voltage swing of the cascoded output stage is overcome by the distributed feed-forward modulator. The designed modulator has a dynamic range of 49 dB at a 0.8-V supply voltage and consumes only 816 nW of power for the 250-Hz bandwidth. The core chip size of the modulator is 1000 lm 9 500 lm by using the 0.18-lm standard CMOS process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.