Gut-microbial butyrate is a short-chain fatty acid (SCFA) of significant physiological importance than the other major SCFAs (acetate and propionate). Most butyrate producers belong to the Clostridium cluster of the phylum Firmicutes, such as Faecalibacterium, Roseburia, Eubacterium, Anaerostipes, Coprococcus, Subdoligranulum, and Anaerobutyricum. They metabolize carbohydrates via the butyryl-CoA: acetate CoA-transferase pathway and butyrate kinase terminal enzymes to produce most of butyrate. Although, in minor fractions, amino acids can also be utilized to generate butyrate via glutamate and lysine pathways. Butyrogenic microbes play a vital role in various gut-associated metabolisms. Butyrate is used by colonocytes to generate energy, stabilizes hypoxia-inducible factor to maintain the anaerobic environment in the gut, maintains gut barrier integrity by regulating Claudin-1 and synaptopodin expression, limits pro-inflammatory cytokines (IL-6, IL-12), and inhibits oncogenic pathways (Akt/ERK, Wnt, and TGF-β signaling). Colonic butyrate producers shape the gut microbial community by secreting various anti-microbial substances, such as cathelicidins, reuterin, and β-defensin-1, and maintain gut homeostasis by releasing anti-inflammatory molecules, such as IgA, vitamin B, and microbial anti-inflammatory molecules. Additionally, butyrate producers, such as Roseburia, produce anti-carcinogenic metabolites, such as shikimic acid and a precursor of conjugated linoleic acid. In this review, we summarized the significance of butyrate, critically examined the role and relevance of butyrate producers, and contextualized their importance as microbial therapeutics.
Environmental factors can influence the composition of gut microbiota, but understanding the combined effect of lifestyle factors on adult gut microbiota is limited. Here, we investigated whether changes in the modifiable lifestyle factors, such as cigarette smoking, alcohol consumption, sleep duration, physical exercise, and body mass index affected the gut microbiota of Korean navy trainees. The navy trainees were instructed to stop smoking and alcohol consumption and follow a sleep schedule and physical exercise regime for eight weeks. For comparison, healthy Korean civilians, who had no significant change in lifestyles for eight weeks were included in this study. A total of 208 fecal samples were collected from navy trainees (n = 66) and civilians (n = 38) at baseline and week eight. Gut flora was assessed by sequencing the highly variable region of the 16S rRNA gene. The α-and β -diversity of gut flora of both the test and control groups were not significantly changed after eight weeks. However, there was a significant difference among individuals. Smoking had a significant impact in altering α-diversity. Our study showed that a healthy lifestyle, particularly cessation of smoking, even in short periods, can affect the gut microbiome by enhancing the abundance of beneficial taxa and reducing that of harmful taxa.
Dietary studies play a crucial role in determining the health‐benefiting effects of most food substances, including prebiotics, probiotics, functional foods, and bioactive compounds. Such studies involve gastrointestinal digestion and colonic fermentation of dietary substances. In colonic fermentation, any digested food is further metabolized in the gut by the residing colonic microbiota, causing a shift in the gut microenvironment and production of various metabolites, such as short‐chain fatty acids. These diet‐induced shifts in the microbial community and metabolite production, which can be assessed through in vitro fermentation models using a donor's fecal microbiota, are well known to impact the health of the host. Although in vivo or animal experiments are the gold standard in dietary studies, recent advancements using different in vitro systems, like artificial colon (ARCOL), mini bioreactor array (MBRA), TNO in vitro model of the colon (TIM), Simulator of the Human Intestinal Microbial Ecosystem (SHIME), M‐SHIME, Copenhagen MiniGut, and Dynamic Gastrointestinal Simulator, make it easy to study the dietary impact in terms of the gut microbiota and metabolites. Such a continuous in vitro system can have multiple compartments corresponding to different parts of the colon, that is, proximal, transverse, and distal colon, making the findings physiologically more significant. Furthermore, postfermentation samples can be analyzed using metagenomic, metabolomic, quantitative‐polymerase chain reaction, and flow‐cytometry approaches. Moreover, studies have shown that in vitro results are in accordance with the in vivo findings, supporting their relevance in dietary studies and giving confidence that shifts in metabolites are only due to microbes. This review meticulously describes the recent advancements in various fermentation models and their relevance in dietary studies.
Finger millet (Eleusine coracana) is a staple food in several parts of the world because of its high nutritional value. In addition to its high nutrient content, finger millet contains numerous bioactive compounds, including polyphenol (10.2 mg/g TAE), flavonoid (5.54 mg/g CE), phytic acid (0.48%), and dietary fiber (15–20%). Polyphenols are known for their anti-oxidant and anti-diabetic role. Phytic acid, previously considered an anti-nutritive substance, is now regarded as a nutraceutical as it reduces carbohydrate digestibility and thus controls post-prandial glucose levels and obesity. Thus, finger millet is an attractive diet for patients with diabetes. Recent findings have revealed that the anti-oxidant activity and bio-accessibility of finger millet polyphenols increased significantly (P < 0.05) in the colon, confirming the role of the gut microbiota. The prebiotic content of finger millet was also utilized by the gut microbiota, such as Faecalibacterium, Eubacterium, and Roseburia, to generate colonic short-chain fatty acids (SCFAs), and probiotic Bifidobacterium and Lactobacillus, which are known to be anti-diabetic in nature. Notably, finger millet-induced mucus-degrading Akkermansia muciniphila can also help in alleviate diabetes by releasing propionate and Amuc_1100 protein. Various millet bio-actives effectively controlled pathogenic gut microbiota, such as Shigella and Clostridium histolyticum, to lower gut inflammation and, thus, the risk of diabetes in the host. In the current review, we have meticulously examined the role of gut microbiota in the bio-accessibility of millet compounds and their impact on diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.