Refrigerant mal-distribution in a distributor located at the inlet of a heat exchanger used for an air conditioning system plays an important role in the heat exchanger performance. Distribution performance in the distributor is greatly affected by the flow conditions as well as the geometrical parameters of the distributor. To clarify the distribution characteristics, it is essential to know flow rates of both liquid and vapor states at every branch tube after distribution. This paper proposes a relatively simple test method, which enables to measure the inlet quality and the flow rate of refrigerant at every branch of the distributor. By using the proposed evaluation method, optimization on the geometrical parameters of the distributor was conducted to reduce the refrigerant mal-distribution. It was confirmed that the optimized distributor was able to reduce the mal-distribution of the refrigerant over branches despite the flow condition changes. By the flow visualization of the refrigerant in the distributor, it was observed that certain amount of liquid refrigerant remained and swayed unstably at the bottom of the distributor. It is supposed that the liquid refrigerant behavior in the distributor great affects the distribution performance.
In this study, various types of porous beams were designed and analyzed to examine the relationship between the behavior of a porous beam and certain nonlocal parameters. The nonlocal parameters were defined as functions of the conditions of defects in the porous material. Finite element analysis was conducted on the beams under typical boundary and loading conditions. Beams with stiffeners having the same dimensions as the defects in the porous beams were also analyzed. The deformation tendency of these beams was determined and described in terms of the nonlocal parameters. The deformation of a porous beam was linearly proportional to the square of the diameters of the defects, whereas that of a beam with a stiffener was linearly proportional to the cube of the diameter of the stiffener. Furthermore, for a stiffened beam with axial loading, the results derived from a 3D solid element and those under 2D plane stress conditions were different.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.