Three different concentrations of four (ethanol, acetone, methanol, and diethyl ether) extracts of licorice, doum, and banana peel were evaluated for antifungal and antimycotoxigenic efficiency against a maize aflatoxigenic fungus, Aspergillus flavus. Among them, the licorice diethyl ether 75% extract was intensely active, showing the best wet and dry weight inhibition and exhibiting the highest efficacy ratio (91%). Regarding aflatoxin B1 (AFB1) production, all the plant extracts tested were effective against AFB1 production after one month of maize storage, with average efficacy ratios ranging from 74.1% to 97.5%. At the same time, Thiram fungicide exhibited an efficacy ratio of 20.14%. The relative expression levels of three structural genes (aflD, aflP, and aflQ) and two regulatory genes (aflR and aflS) were significantly downregulated when compared to untreated maize grains or Thiram-treated maize grains. The doum diethyl ether 75% peel extract showed the highest total phenolic content (60.48 mg GAE/g dry extract wt.) and antioxidant activity (84.71 μg/mL). GC–MS analysis revealed that dimethoxycinnamic acid, aspartic acid, valproic acid, and linoleic acid might imbue the extracts with antioxidant capacities in relation to fungal growth and aflatoxin biosynthesis. Finally, the results suggest that the three plant extracts can be considered a promising source for developing potentially effective and environmentally safer alternative ways to control aflatoxin formation, thus creating a potentially protective method for grain storage.
One of the tomato’s acutely devastating diseases is Alternaria leaf spot, lowering worldwide tomato production. In this study, one fungal isolate was isolated from tomatoes and was assigned to Alternaria alternata TAA-05 upon morphological and molecular analysis of the ITS region and 18SrRNA, endoPG, Alt a1, and gapdh genes. Also, Urtica dioica and Dodonaea viscosa methanol leaf extracts (MLEs) were utilized as antifungal agents in vitro and compared to Ridomil, a reference chemical fungicide. The in vitro antifungal activity results revealed that Ridomil (2000 µg/mL) showed the highest fungal growth inhibition (FGI) against A. alternata (96.29%). Moderate activity was found against A. alternata by D. viscosa and U. dioica MLEs (2000 µg/mL), with an FGI value of 56.67 and 54.81%, respectively. The abundance of flavonoid and phenolic components were identified by HPLC analysis in the two plant extracts. The flavonoid compounds, including hesperidin, quercetin, and rutin were identified using HPLC in D. viscosa MLE with concentrations of 11.56, 10.04, and 5.14 µg/mL of extract and in U. dioica MLE with concentrations of 12.45, 9.21, and 5.23 µg/mL, respectively. α-Tocopherol and syringic acid, were also identified in D. viscosa MLE with concentrations of 26.13 and 13.69 µg/mL, and in U. dioica MLE, with values of 21.12 and 18.33 µg/mL, respectively. Finally, the bioactivity of plant extracts suggests that they play a crucial role as antifungal agents against A. alternata. Some phenolic chemicals, including coumaric acid, caffeic acid, ferulic acid, and α-tocopherol, have shown that they may be utilized as environmentally friendly fungicidal compounds.
Planting sterilized corn grains in soil, treated with the mold inhibitors Fix-a-tox (FAT) or Antitox Plus (AP) resulted, in cases, in dwarfed and malformed corn plants and in the development of deformed, bone-shaped and grain-free corn cobs. Moreover, treating corn grains with the mold inhibitors before storage for one month caused significant changes in some nutritional components of corn grains, i.e. proteins, aminoacids, crude fibers, moisture, fats, ash and carbohydrates. Insignificant differences in protein percetage were detected between control inoculated with Aspergillus flavus and those treated with butyl hydroxyanisole (BHA) antioxidant or FAT treatments, whereas ground clove significantly reduced protein content. In corn grains inoculated with Fusariumverticillioides, previous treatment with FAT resulted in significant reduction in the content of proline, aspartic acid, cysteine, valine, isoleucine and leucine, whereas treatment with BHA significantly reduced the content of threonine, serine, glutamic, glycine, alanine, phenylalanine and tyrosine. In Aspergillus flavus treatments, FAT significantly increased the content of methionine and threonine, whereas, aspartic acid showed 26 percentage decreases, compared to the control. Pronounced reductions in threonine, isoleucine and leucine were also detected in corn grains treated with BHA. Significant increases in fiber content were detected in inoculated corn grains treated with BHA, attaining 1.34 to 2.05-fold over that of control, respectively. Treatment with FAT and BHA led to pronounced reductions in moisture content in corn inoculated with both F. verticilloides and A. flavus trials. However, treatment with ground clove significantly increased the moisture content in A. flavus treatment. FAT treatment led to significant increase in ash and fat contents in both A. flavus and F. verticilloides treatments, whereas the other tested treatments of F. verticilloides significantly reduced ash content. Treatment with ground clove significantly reduced fat content in A. flavus treatment. All the tested materials significantly reduced carbohydrate content.
Even though the green revolution was a significant turning point in agriculture, it was also marked by the widespread use of chemical pesticides, which prompted severe concerns about their influence on human and environmental health. As a result, the demand for healthier and more environmentally friendly alternatives to control plant diseases and avoid food spoilage is intensifying. Among the proposed alternatives, food by-product extracts, especially from the most consumed fruits in Egypt, eggplant, sugar apple, and pomegranate peel wastes, were largely ignored. Hence, we chose them to evaluate their antifungal and antiaflatoxigenic activities against maize fungus, Aspergillus flavus. All the extracts exhibited multiple degrees of antifungal growth and aflatoxin B1 (AFB1) inhibitory activities (35.52% to 91.18%) in broth media. Additionally, diethyl ether 50% eggplant, ethanol 75% sugar apple, and diethyl ether 25% pomegranate extracts exhibited the highest AFB1 inhibition, of 96.11%, 94.85%, and 78.83%, respectively, after one month of treated-maize storage. At the same time, Topsin fungicide demonstrated an AFB1 inhibition ratio of 72.95%. The relative transcriptional levels of three structural and two regulatory genes, aflD, aflP, aflQ, aflR, and aflS, were downregulated compared to the infected control. The phenolic content (116.88 mg GAEs/g DW) was highest in the 25% diethyl ether pomegranate peel extract, while the antioxidant activity was highest in the 75% ethanol sugar apple extract (94.02 µg/mL). The most abundant active compounds were found in the GC-MS analysis of the fruit peel extracts: α-kaurene, α-fenchene, p-allylphenol, octadecanoic acid, 3,5-dihydroxy phenol, hexestrol, xanthinin, and linoleic acid. Finally, the three fruit peel waste extracts could be a prospective source of friendly ecological compounds that act as environmentally safer and more protective alternatives to inhibit AFB1 production in maize storage.
Stimulation of growth by Rhizoctonia solani with the formation of infection cushions as a response to root exudates was reported by many authors (KERR 1956, FLENTJE et al 1963, WYLUE 1959, DODMAN and FLENTJE 1970), In 1968 a correlation between the type of infection cushions formed by R. solani and the mode of fungal penetration into host tissues. They introduced evidence that induction of dome-shaped infection cushions was followed by a direct penetration with or without penetration pegs, while formation of lobate appressoria preceeds penetration through stomata.According to MITCHELL (1976), investigations in this area were unable to confirm a correlation between susceptibility to infection and a selective stimulation by exudates of susceptible tissues.This investigation was carried out to confirm a correlation between susceptibility or resistance of cotton seedlings to R. solani and the selective formation of different types of infection cushion-like structures as a response to root exudates of susceptible or resistant plant tissues. Materials and Methods (A) Inoculations of plantsFour Egyptian cotton cuitivars (Giza 67, Giza 68, Giza 69 and Giza 75) were used as test plants. Seeds were germinated on wet filter paper in dark at 30 °C. After 72 h, seedlings U.S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.