Cancer genomes accumulate nucleotide sequence variations that number in the tens of thousands per genome. A prominent fraction of these mutations is thought to arise as a consequence of the off-target activity of DNA/RNA editing cytosine deaminases. These enzymes, collectively called activation induced deaminase (AID)/APOBECs, deaminate cytosines located within defined DNA sequence contexts. The resulting changes of the original C:G pair in these contexts (mutational signatures) provide indirect evidence for the participation of specific cytosine deaminases in a given cancer type. The conventional method used for the analysis of mutable motifs is the consensus approach. Here, for the first time, we have adopted the frequently used weight matrix (sequence profile) approach for the analysis of mutagenesis and provide evidence for this method being a more precise descriptor of mutations than the sequence consensus approach. We confirm that while mutational footprints of APOBEC1, APOBEC3A, APOBEC3B, and APOBEC3G are prominent in many cancers, mutable motifs characteristic of the action of the humoral immune response somatic hypermutation enzyme, AID, are the most widespread feature of somatic mutation spectra attributable to deaminases in cancer genomes. Overall, the weight matrix approach reveals that somatic mutations are significantly associated with at least one AID/APOBEC mutable motif in all studied cancers.
The fourth chromosome smallest in the genome of Drosophila melanogaster differs from other chromosomes in many ways. It has high repeat density in conditions of a large number of active genes. Gray bands represent a significant part of this polytene chromosome. Specific proteins including HP1a, POF, and dSETDB1 establish the epigenetic state of this unique chromatin domain. In order to compare maps of localization of genes, bands, and chromatin types of the fourth chromosome, we performed FISH analysis of 38 probes chosen according to the model of four chromatin types. It allowed clarifying the dot chromosome cytological map consisting of 16 loose gray bands, 11 dense black bands, and 26 interbands. We described the relation between chromatin states and bands. Open aquamarine chromatin mostly corresponds to interbands and it contains 5′UTRs of housekeeping genes. Their coding parts are embedded in gray bands substantially composed of lazurite chromatin of intermediate compaction. Polygenic black bands contain most of dense ruby chromatin, and also some malachite and lazurite. Having an accurate map of the fourth chromosome bands and its correspondence to physical map, we found that DNase I hypersensitivity sites, ORC2 protein, and P –elements are mainly located in open aquamarine chromatin, while element 1360 , characteristic of the fourth chromosome, occupies band chromatin types. POF and HP1a proteins providing special organization of this chromosome are mostly located in aquamarine and lazurite chromatin. In general, band organization of the fourth chromosome shares the features of the whole Drosophila genome. Electronic supplementary material The online version of this article (10.1007/s00412-019-00703-x) contains supplementary material, which is available to authorized users.
The Leishmania donovani species complex consists of all L. donovani and L. infantum strains mainly responsible for visceral leishmaniasis (VL). It was suggested that genome rearrangements in Leishmania spp. occur very often, thus enabling parasites to adapt to the different environmental conditions. Some of these rearrangements may be directly linked to the virulence or explain the reduced efficacy of antimonial drugs in some isolates. In the current study, we focused on a large-scale analysis of putative gene conversion events using publicly available datasets. Previous population study of L. donovani suggested that population variability of L. donovani is relatively low, however the authors used masking procedures and strict read selection criteria. We decided to re-analyze DNA-seq data without masking sequences, because we were interested in the most dynamic fraction of the genome. The majority of samples have an excess of putative gene conversion/recombination events in the noncoding regions, however we found an overall excess of putative intrachromosomal gene conversion/recombination in the protein coding genes, compared to putative interchromosomal gene conversion/recombination events.
Trichlorpyrimidin (I) setzt sich mit Natriumazid (II) zum Triazidopyrimidin (III) um.
Long noncoding RNAs (lncRNAs) play an important role in the control of many physiological and pathophysiological processes, including the development of hypertension and other cardiovascular diseases. Nonetheless, the understanding of the regulatory function of many lncRNAs is still incomplete. This work is a continuation of our earlier study on the sequencing of hypothalamic transcriptomes of hypertensive ISIAH rats and control normotensive WAG rats. It aims to identify lncRNAs that may be involved in the formation of the hypertensive state and the associated behavioral features of ISIAH rats. Interstrain differences in the expression of seven lncRNAs were validated by quantitative PCR. Differential hypothalamic expression of lncRNAs LOC100910237 and RGD1562890 between hypertensive and normotensive rats was shown for the first time. Expression of four lncRNAs (Snhg4, LOC100910237, RGD1562890, and Tnxa-ps1) correlated with transcription levels of many hypothalamic genes differentially expressed between ISIAH and WAG rats (DEGs), including genes associated with the behavior/neurological phenotype and hypertension. After functional annotation of these DEGs, it was concluded that lncRNAs Snhg4, LOC100910237, RGD1562890, and Tnxa-ps1 may be involved in the hypothalamic processes related to immune-system functioning and in the response to various exogenous and endogenous factors, including hormonal stimuli. Based on the functional enrichment analysis of the networks, an association of lncRNAs LOC100910237 and Tnxa-ps1 with retinol metabolism and an association of lncRNAs RGD1562890 and Tnxa-ps1 with type 1 diabetes mellitus are proposed for the first time. Based on a discussion, it is hypothesized that previously functionally uncharacterized lncRNA LOC100910237 is implicated in the regulation of hypothalamic processes associated with dopaminergic synaptic signaling, which may contribute to the formation of the behavioral/neurological phenotype and hypertensive state of ISIAH rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.