Efficient second harmonic generation (SHG) in nanophotonic designs based on all-dielectric nanostructures demands materials with large values of the quadratic nonlinear susceptibility, low dissipative losses, and high refractive index. One of the best materials meeting all these parameters is gallium phosphide (GaP). However, second-order nonlinearity requires high crystallinity and morphology quality of the GaP layer grown for further lithographic processing. Here we develop a method to fabricate high-quality crystalline GaP metasurfaces, which demonstrate pronounced linear and nonlinear optical properties. Direct growth of a GaP layer on a sapphire substrate tackles the previous problem of wafer bonding, because of high optical contrast between fabricated resonant nanoparticles and the substrate. As a result, the fabricated GaP metasurface supports bound state in continuum mode with an experimental quality factor around 100 yielding a strong enhancement of SHG in narrow spectral range. We believe that the developed approach will become a versatile platform for nonlinear all-dielectric nanophotonics.
We present the results of calculation and experimental testing of an achromatic polarization converter and a composite terahertz waveplate (WP), which are represented by sets of plane-parallel birefringent plates with in-plane birefringence axis. The calculations took into account the effect of interference, which was especially prominent when plates were separated by an air gap. The possibility of development of a spectrum analyzer design based on a set of WPs is also discussed.
Detection of hazardous volatile organic and inorganic species is a crucial task for addressing human safety in the chemical industry. Among these species, there are hydrogen halides (HX, X = Cl, Br, I) vastly exploited in numerous technological processes. Therefore, the development of a cost-effective, highly sensitive detector selective to any HX gas is of particular interest. Herein, we demonstrate the optical detection of hydrogen chloride gas with solution-processed halide perovskite nanowire lasers grown on a nanostructured alumina substrate. An anion exchange reaction between a CsPbBr3 nanowire and vaporized HCl molecules results in the formation of a structure consisting of a bromide core and thin mixed-halide CsPb(Cl,Br)3 shell. The shell has a lower refractive index than the core does. Therefore, the formation and further expansion of the shell reduce the field confinement for experimentally observed laser modes and provokes an increase in their frequency. This phenomenon is confirmed by the coherency of the data derived from XPS spectroscopy, EDX analysis, in situ XRD experiments, HRTEM images, and fluorescent microspectroscopy, as well as numerical modeling for Cl– ion diffusion and the shell-thickness-dependent spectral position of eigenmodes in a core–shell perovskite nanowire. The revealed optical response allows the detection of HCl molecules in the 5–500 ppm range. The observed spectral tunability of the perovskite nanowire lasers can be employed not only for sensing but also for their precise spectral tuning.
We demonstrate the possibility of applying surface-enhanced Raman spectroscopy (SERS) combined with machine learning technology to detect and differentiate influenza type A and B viruses in a buffer environment. The SERS spectra of the influenza viruses do not possess specific peaks that allow for their straight classification and detection. Machine learning technologies (particularly, the support vector machine method) enabled the differentiation of samples containing influenza A and B viruses using SERS with an accuracy of 93% at a concentration of 200 μg/mL. The minimum detectable concentration of the virus in the sample using the proposed approach was ~0.05 μg/mL of protein (according to the Lowry protein assay), and the detection accuracy of a sample with this pathogen concentration was 84%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.