Abstract-In this paper, a modular three-phase multilevel inverter specially suited for electrical drive applications is proposed. Unlike the cascaded H-bridge inverter, this topology is based on power cells connected in cascade using two inverter legs in series. A detailed analysis of the structure and the development of design equations for the load voltage with n levels are carried out using pulsewidth-modulation phase-shifted multicarrier modulation. Simulations and experimental results for a 15-kW three-phase system, with nine voltage levels, validate the study presented.
DC -DC step-up converters for high-output voltage applications typically demand high voltage devices, leading to high conduction and switching losses. This identified demand has motivated research on active clamping and multi-level topologies. On this context, this study presents the study of a novel DC -DC boost converter with three-level boost-type active clamping, zero-voltage switching (ZVS) soft-switching and constant frequency pulse-width modulation. As shown analytically and through experimental results, high efficiency and reduced voltage ratings for the power semiconductors are achieved, thus, making the topology suitable for converters requiring high-output DC voltage. Furthermore, a topological modification for achieving ZVS operation in all semiconductors and other types of switching cells for boost-type converters is introduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.