Novel symmetric hybrid multilevel topologies are introduced for both single-and three-phase medium-voltage highpower systems. The topology conception is presented in detail, where a three-level switching cell with low component count, and its modulation pattern give the origin of the proposed converters. Voltage sharing and low output-voltage distortion are achieved. The theoretical frequency spectra are derived. Switching devices are separated into high-and low-frequency devices, generating hybrid converters. Five-level three-phase topologies are generated from only three insulated dc sources, while the number of semiconductors is the same as for the cascaded H bridge. Both simulation and experimental results are provided showing the validity of the analysis.
DC -DC step-up converters for high-output voltage applications typically demand high voltage devices, leading to high conduction and switching losses. This identified demand has motivated research on active clamping and multi-level topologies. On this context, this study presents the study of a novel DC -DC boost converter with three-level boost-type active clamping, zero-voltage switching (ZVS) soft-switching and constant frequency pulse-width modulation. As shown analytically and through experimental results, high efficiency and reduced voltage ratings for the power semiconductors are achieved, thus, making the topology suitable for converters requiring high-output DC voltage. Furthermore, a topological modification for achieving ZVS operation in all semiconductors and other types of switching cells for boost-type converters is introduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.