Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles.
Microwave power absorption measurements at 9.4 GHz were carried out on as-cast amorphous ribbons of nominal composition Co66Fe4B12Si13Nb4Cu. Two absorptions were observed: a small signal at a low dc field (<0.01T) and another one at a high dc field (∼0.1682T). The high-field signal shows all the features corresponding to ferromagnetic resonance. The low-field absorption (LFA) signal exhibits different characteristics such as hysteresis and a minimum in power absorption at zero magnetic field. A correlation between this LFA signal and magnetoimpedance measurements showed that both electromagnetic processes are associated with the same phenomenon.
Synthesis of high-purity BiFeO3 is very important for practical applications. This task has been very challenging for the scientific community because nonstoichiometric Bi(x)Fe(y)O(z) species typically appear as byproducts in most of the synthesis routes. In the present work, we outline the synthesis of BiFeO3 nanostructures by a combustion reaction, employing tartaric acid or glycine as promoter. When glycine is used, a porous BiFeO3 network composed of tightly assembled and sintered nanocrystallites is obtained. The origin of high purity BiFeO3 nanomaterial as well as the formation of other byproducts is explained on the basis of metal-ligand interactions. Structural, morphological, and optical analysis of the intermediate that preceded the formation of porous BiFeO3 structures was accomplished. The thorough characterization of BiFeO3 nanoparticles (NPs) included powder X-ray diffraction (XRD); scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM); thermogravimetric analysis (TGA); UV-vis electronic absorption (diffuse reflectance mode), Raman scattering, Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies; and vibrating sample magnetometry (VSM). The byproducts like β-Bi2O3 and 5 nm Bi2Fe4O9 NPs were obtained when tartaric acid was the promoter. However, no such byproducts were formed using glycine in the synthesis process. The average sizes of the crystallites for BiFeO3 were 26 and 23 nm, for tartaric acid and glycine promoters, respectively. Two band gap energies, 2.27 and 1.66 eV, were found for BiFeO3 synthesized with tartaric acid, obtained from Tauc's plots. A remarkable selective enhancement in the intensity of the BiFeO3 A1 mode, as a consequence of the resonance Raman effect, was observed and discussed for the first time in this work. For glycine-promoted BiFeO3 nanostructures, the measured magnetization (M) value at 20,000 Oe (0.64 emu g(-1)) was ∼5 times lower than that obtained using tartaric acid. The difference between the M values has been associated with the different morphologies of the BiFeO3 nanostructures.
In this letter, the effect of helical anisotropy, induced by torsion strain, on the circular permeability μφ, of a vanishing negative magnetostrictive CoFeSiB wire is presented. As a function of a dc applied magnetic field, Hdc, μφ shows an asymmetric behavior dependent on the direction of the applied torsion strain: for counterclockwise torsion angles (−), a monotonous decrease in the μφ (Hdc) double peak magnetoimpedance response is observed together with a linear increase in the wire’s circular anisotropy field Hk. In contrast, for clockwise torsion angles (+), a gradual suppression of the μφ (Hdc) maxima was evident, for which a magnetic softening of the wire is assumed. Results are interpreted in terms of a counterbalance/enhancement effect of the wire’s circular anisotropy for + and − torsion angles, respectively.
Using off-axis electron holography under Lorentz microscopy conditions to experimentally determine the magnetization distribution in individual cobalt (Co) nanowires, and scanning precessionelectron diffraction to obtain their crystalline orientation phase map, allowed us to directly visualize with high accuracy the effect of crystallographic texture on the magnetization of nanowires. The influence of grain boundaries and disorientations on the magnetic structure is correlated on the basis of micromagnetic analysis in order to establish the detailed relationship between magnetic and crystalline structure. This approach demonstrates the applicability of the method employed and provides further understanding on the effect of crystalline structure on magnetic properties at the nanometric scale. V C 2015 AIP Publishing LLC. [http://dx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.