Using off-axis electron holography under Lorentz microscopy conditions to experimentally determine the magnetization distribution in individual cobalt (Co) nanowires, and scanning precessionelectron diffraction to obtain their crystalline orientation phase map, allowed us to directly visualize with high accuracy the effect of crystallographic texture on the magnetization of nanowires. The influence of grain boundaries and disorientations on the magnetic structure is correlated on the basis of micromagnetic analysis in order to establish the detailed relationship between magnetic and crystalline structure. This approach demonstrates the applicability of the method employed and provides further understanding on the effect of crystalline structure on magnetic properties at the nanometric scale. V C 2015 AIP Publishing LLC. [http://dx
In this work, we report the fabrication of self-assembled zinc oxide nanorods grown on pentagonal faces of silver nanowires by using microwaves irradiation. The nanostructures resemble a hierarchal nanoantenna and were used to study the far and near field electrical metal-semiconductor behavior from the electrical radiation pattern resulting from the phase map reconstruction obtained using off-axis electron holography. As a comparison, we use electric numerical approximations methods for a finite number of ZnO nanorods on the Ag nanowires and show that the electric radiation intensities maps match closely the experimental results obtained with electron holography. The time evolution of the radiation pattern as generated from the nanostructure was recorded under radio frequency signal stimulation, in which the generated electrical source amplitude and frequency were varied from 0 to 5 V and from 1 to 10 MHz, respectively. The phase maps obtained from electron holography show the change in the distribution of the electric radiation pattern for individual nanoantennas. The mapping of this electrical behavior is of the utmost importance to gain a complete understanding for the metal-semiconductor (Ag/ZnO) heterojunction that will help to show the mechanism through which these receiving/transmitting structures behave at nanoscale level.
The purpose of this paper is to show surface irregularities in gold decahedra nanoparticles extracted by using off-axis electron holography in a JEOL ARM 200F microscope. Electron holography has been used in a dual-lens system within the objective lenses: main objective lens and objective minilens. Parameters such as biprism voltage, fringe spacing (σ), fringe width (W) and optimum fringe contrast have been calibrated. The reliability of the transmission electron microscope performance with these parameters was carried out through a plug-in in the Digital-Micrograph software, which considers the mean inner potential within the particle leading a precise determination of the morphological surface of decahedral nanoparticles obtained from the reconstructed unwrapped phase and image processing. We have also shown that electron holography has the capability to extract information from nanoparticle shape that is currently impossible to obtain with any other electron microscopy technique.
The control growth of the cubic meta-stable nitride phase is a challenge because of the crystalline nature of the nitrides to grow in the hexagonal phase, and accurately identifying the phases and crystal orientations in local areas of the nitride semiconductor films is important for device applications. In this study, we obtained phase and orientation maps of a metastable cubic GaN thin film using precession electron diffraction (PED) under scanning mode with a point-to-point 1 nm probe size beam. The phase maps revealed a cubic GaN thin film with hexagonal GaN inclusions of columnar shape. The orientation maps showed that the inclusions have nucleation sites at the cubic GaN {111} facets. Different growth orientations of the inclusions were observed due to the possibility of the hexagonal {0001} plane to grow on any different {111} cubic facet. However, the generation of the hexagonal GaN inclusions is not always due to a 60° rotation of a {111} plane. These findings show the advantage of using PED along with phase and orientation mapping, and the analysis can be extended to differently composed semiconductor thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.