Photodissociation of OCS in the region from 222–248 nm has been investigated by monitoring the CO and S(1D2) primary photoproducts; as well as the secondary production of S(3P2), S(3P1), and S(3P0) using fluorescence induced by a tunable vacuum ultraviolet laser source based on four-wave mixing in magnesium vapor. The quantum yield of S(3P) was found to be 0.00±0.02 at 222 nm. Thus, in contrast to our preliminary report, the present more detailed investigation shows that the sole sulfur product appears to be S(1D). The CO photofragment is produced almost exclusively in v=0 [CO(v=1)/ CO(v=0)≤0.02], but the rotational distribution is inverted and peaked at very high rotational levels. The peak shifts from J=56 for dissociation at 222 nm to J=31 at 248 nm. Doppler profiles of the CO rotational transitions reveal (1) that all observed levels are produced in coincidence with S(1D), (2) that for 222 nm photolysis the fragment recoil anisotropy shifts from a distribution characterized by β=1.9 at J=67 toward one characterized by β=0 near J=54, (3) that the CO velocity vector is aligned nearly perpendicular to its angular momentum vector, and (4) that the CO angular momentum vector is also aligned parallel to that component of the transition dipole which lies perpendicular to the recoil velocity. These results are interpreted in terms of a model for the dissociation in which excitation takes place to two surfaces of A′ and A″ symmetry derived from a bent 1Δ configuration. Dissociation of OCS clusters was also investigated and was found to produce a photochemistry completely different from that of the monomers. Rotationally cold CO as well as S2 in both the X3Σ−g and a1Δg states was observed.
Articles you may be interested inState-selected imaging studies of formic acid photodissociation dynamics J. Chem. Phys. 132, 154306 (2010); 10.1063/1.3386576 CO product distribution from metastable levels of HCO X2 A' prepared by stimulated emission pumping J. Chem. Phys. 98, 5095 (1993); 10.1063/1.464966 Stateselected photodissociation dynamics of HONO(A1 A'): Characterization of the NO fragmentMetastable resonances on the ground electronic state of the HCO radical have been prepared by stimulated emission pumping. The resonances have energies 5000 to 10 000 cm Ϫ1 above the dissociation limit of HCO and can be assigned by their vibrational and asymmetric-top rotational character. The transition linewidths of the resonances and the rotational and vibrational distributions of the CO dissociation products have been measured. The linewidths show a strong dependence on the vibrational character of the resonance rather than a monotonic dependence on energy, and thus provide an important example of nonstatistical behavior. CO͑vϭ2͒ was produced in the decay of all six resonances studied, while only the three highest energy resonances produced measurable amounts of CO͑vϭ3͒. CO rotational distributions with population in low-J states, which often showed nonstatistical structure, were characteristic of the products from all the resonances studied. The rotational distributions depend both on the vibrational character of the parent state and on the rotational state prepared in the HCO. The experimental results are compared and contrasted with previous quantum mechanical calculations and analyzed in the context of a modified Franck-Condon model for the dissociation.
The depolarization of the rotational angular momentum of electronically excited OH( 2 AE) radicals through collisions with water molecules has been measured using Zeeman quantum beat spectroscopy. The new data have permitted the evaluation of OH(A) state-specific quenching and angular momentum depolarization cross-sections for superthermal OH(A) radicals with mean relative velocities centred around 3500 m s À1 . The quenching cross-sections are compared both with values available in the literature, and with predictions based on a simple harpoon model, and are found to be in good qualitative accord with previous findings. For the lowest rotational levels studied, the depolarization cross-sections (which include contributions from both elastic and inelastic processes in OH(A)) are found to approach s100 Å 2 , only slightly below the high-temperature cross-sections for rotational energy transfer determined elsewhere. The data suggest that under the present conditions rotational energy transfer is accompanied by significant depolarization. The cross-section for the translational moderation of superthermal OH(X) by water is also determined in the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.