The "fetal" or "early" origins of adult disease hypothesis was originally put forward by David Barker and colleagues and stated that environmental factors, particularly nutrition, act in early life to program the risks for adverse health outcomes in adult life. This hypothesis has been supported by a worldwide series of epidemiological studies that have provided evidence for the association between the perturbation of the early nutritional environment and the major risk factors (hypertension, insulin resistance, and obesity) for cardiovascular disease, diabetes, and the metabolic syndrome in adult life. It is also clear from experimental studies that a range of molecular, cellular, metabolic, neuroendocrine, and physiological adaptations to changes in the early nutritional environment result in a permanent alteration of the developmental pattern of cellular proliferation and differentiation in key tissue and organ systems that result in pathological consequences in adult life. This review focuses on those experimental studies that have investigated the critical windows during which perturbations of the intrauterine environment have major effects, the nature of the epigenetic, structural, and functional adaptive responses which result in a permanent programming of cardiovascular and metabolic function, and the role of the interaction between the pre- and postnatal environment in determining final health outcomes.
Placental insufficiency, resulting in restriction of fetal substrate supply, is a major cause of intrauterine growth restriction (IUGR) and increased neonatal morbidity. Fetal adaptations to placental restriction maintain the growth of key organs, including the heart, but the impact of these adaptations on individual cardiomyocytes is unknown. Placental and hence fetal growth restriction was induced in fetal sheep by removing the majority of caruncles in the ewe before mating (placental restriction, PR). Vascular surgery was performed on 13 control and 11 PR fetuses at 110-125 days of gestation (term: 150 +/- 3 days). PR fetuses with a mean gestational Po(2) < 17 mmHg were defined as hypoxic. At postmortem (<135 or >135 days), fetal hearts were collected, and cardiomyocytes were isolated and fixed. Proliferating cardiomyocytes were counted by immunohistochemistry of Ki67 protein. Cardiomyocytes were stained with methylene blue to visualize the nuclei, and the proportion of mononucleated cells and length and width of cardiomyocytes were measured. PR resulted in chronic fetal hypoxia, IUGR, and elevated plasma cortisol concentrations. Although there was no difference in relative heart weights between control and PR fetuses, there was an increase in the proportion of mononucleated cardiomyocytes in PR fetuses. Whereas mononucleated and binucleated cardiomyocytes were smaller, the relative size of cardiomyocytes when expressed relative to heart weight was larger in PR compared with control fetuses. The increase in the relative proportion of mononucleated cardiomyocytes and the relative sparing of the growth of individual cardiomyocytes in the growth-restricted fetus are adaptations that may have long-term consequences for heart development in postnatal life.
Individuals exposed to an increased nutrient supply before birth have a high risk of becoming obese children and adults. It has been proposed that exposure of the fetus to high maternal nutrient intake results in permanent changes within the central appetite regulatory network. No studies, however, have investigated the impact of increased maternal nutrition on the appetite regulatory network in species in which this network develops before birth, as in the human. In the present study, pregnant ewes were fed a diet which provided 100% (control, n = 8) or approximately 160% (well-fed, n = 8) of metabolizable energy requirements. Ewes were allowed to lamb spontaneously, and lambs were sacrificed at 30 days of postnatal age. All fat depots were dissected and weighed, and expression of the appetite-regulating neuropeptides and the leptin receptor (OBRb) were determined by in situ hybridization. Lambs of well-fed ewes had higher glucose (Glc) concentrations during early postnatal life (F = 5.93, P<0.01) and a higher relative subcutaneous (s.c.) fat mass at 30 days of age (34.9+/-4.7 g/kg vs. 22.8+/-3.3 g/kg; P<0.05). The hypothalamic expression of pro-opiomelanocortin was higher in lambs of well-fed ewes (0.48+/-0.09 vs. 0.28+/-0.04, P<0.05). In lambs of overnourished mothers, but not in controls, the expression of OBRb was inversely related to total relative fat mass (r2 = 0.50, P = 0.05, n = 8), and the direct relationship between the expression of the central appetite inhibitor CART and fat mass was lost. The expression of neuropeptide Y and AGRP was inversely related to total relative fat mass (NPY, r2 = 0.28, P<0.05; agouti-related peptide, r2 = 0.39, P<0.01). These findings suggest that exposure to increased nutrition before birth alters the responses of the central appetite regulatory system to signals of increased adiposity after birth.
Block BS, Schlafer DH, Wentworth RA, Kreitzer LA and Nathanielsz PW (1990) MA (1993)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.