Large-scale flood risk assessment is essential in supporting national and global policies, emergency operations and land-use management. The present study proposes a cost-efficient method for the large-scale mapping of direct economic flood damage in data-scarce environments. The proposed framework consists of three main stages: (i) deriving a water depth map through a geomorphic method based on a supervised linear binary classification; (ii) generating an exposure land-use map developed from multi-spectral Landsat 8 satellite images using a machine-learning classification algorithm; and (iii) performing a flood damage assessment using a GIS tool, based on the vulnerability (depth–damage) curves method. The proposed integrated method was applied over the entire country of Romania (including minor order basins) for a 100-year return time at 30-m resolution. The results showed how the description of flood risk may especially benefit from the ability of the proposed cost-efficient model to carry out large-scale analyses in data-scarce environments. This approach may help in performing and updating risk assessments and management, taking into account the temporal and spatial changes in hazard, exposure, and vulnerability.
Major accidents involving dangerous substances pose a serious threat to the health and safety of local communities and the environment, as well as to the integrity and development of infrastructure where Seveso establishments are located. In some cases, the disastrous effects may affect larger, even cross-border areas. At European level, there are continuous efforts to develop land-use planning policies and regulations to reduce consequences and to prevent future accidents from happening. Hence, research in this field comes to support the current actions and strategies of the European Commission to improve the capacity of the EU Member States to cope with and respond to the identified risks through effective prevention, preparedness and response measures. In Romania, the Seveso establishments are mostly located in or very close to urban areas. This paper analyses vulnerability in case of two different accident scenarios (explosion and toxic dispersion) in Targu-Mures, a city hosting one of the largest Seveso upper-tier establishments in Romania. The approach starts with exposure analysis-the first step in the process of vulnerability analysis-which identifies all the elements at risk, be they social (population, medical facilities, schools), environmental (protected areas, water bodies) or economic (transport infrastructure, buildings, utility and water supply networks, fuel or food storage facilities). Following the exposure analysis, vulnerability is assessed based on indicators selected in such way so that they cover the entire range of social, economic, environmental aspects, as well as the existing response capabilities in case of a major accident.
<p>A large-scale flood risk analysis that properly evaluates and quantifies the three components of risk (hazard, exposure and vulnerability) is essential in order to support national and global policies, emergency operations and land use management. For example, governments can use risk information for the prioritisation of investments to implement measures for flood damage reduction, for emergency operations and for land-use policies, while reinsurance companies can improve the estimation of the flood risk-based insurance premiums.</p><p>Nevertheless, limits in time and data represent signi&#64257;cant limitation this kind of applications: i) the significant amount of data and parameters required for the calibration and validation of traditional model; ii) the moderate/coarse resolution of data available at global scale and the sparse availability of high-resolution data that may affect the accuracy of analysis results; iii) the high cost and computational demand of hydraulic models. However, the growing availability of data from new technologies of Earth observation (EO) and environmental monitoring combined with the advances in newly developed algorithms (e.g. machine learning) have extended the range of possibilities for geoscientists, updating and re-inventing the way highly resource- and data-intensive processes, such as risk management and communication, are carried out.</p><p>The present study proposes a cost-efficient method for large-scale analysis and mapping of direct economic flood damage at medium resolution in data-scarce environments. The proposed methodological framework consists of three main stages. The first step concerns the derivation of a water depth map through a Digital Elevation Model (30m resolution)-based geomorphic method that uses supervised linear binary classification. The second step aims to realize an exposure map on the basis of a supervised land use classification through the use of a machine learning technique: the information extracted from Landsat-8 remotely sensed optical images were utilized in combination with the discontinuous (i.e. available for a few large cities in Europe) existing high-resolution Urban-Atlas land use maps in order to obtain a land-use map with a resolution of 30 m. Finally, the flood economic damage mapping was carried out using the results of the two previous steps in a GIS algorithm, developed by authors, based on the vulnerability (depth-damage) curves method. The proposed integrated framework has been tested in Romania for a 100-years return time event. The resulting map (at 30&#8239;m resolution) covers the entire Romanian territory including minor order rivers, which are often neglected in large-scale analyses.</p><p>The demonstrative application shows how the description of flood risk may particularly benefit from the integrated use of geomorphic methods, machine learning algorithms and EO freely available monitoring data. The ability of the proposed cost-efficient model to carry out high-resolution and large-scale analyses in data-scarce environments allows performing future risk assessments keeping abreast of temporal and spatial changes in terms of hazard, exposure and vulnerability.</p><p><em>Acknowledgement: This work was carried out during the tenure of an ERCIM &#8216;Alain Bensoussan&#8217; Fellowship Programme.</em></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.