Purpose: To study and compare the dose response curves of the new GafChromic EBT3 film for megavoltage and kilovoltage x-ray beams, with different spatial resolutions. Methods: EBT3 films (lot#A101711-02) were exposed to each x-ray beam (6 MV, 15 MV, and 50 kV) at 7 dose values (50-3200 cGy). Each film piece was scanned three consecutive times in the center of Epson 10000XL flatbed scanner in 48-bit color at two separate spatial resolutions of 75 and 300 dpi. The data were analyzed using ImageJ and, for each scanned image, a region of interest (ROI) of 2 × 2 cm 2 at the field center was selected to obtain the mean pixel value with its standard deviation in the ROI. For each energy, dose value and spatial resolution, the average net optical density (netOD) and its associated uncertainty were determined. The Student's t-test was performed to evaluate the statistical differences between the net OD/dose values of the three energy modalities, with different color channels and spatial resolutions. Results and Discussion: The dose response curves for the three energy modalities were compared in three color channels. Weak energy dependence was found. For doses above 100 cGy, no statistical differences were observed between 6 and 15 MV beams, regardless of spatial resolution and color channel. However, statistical differences were observed between 50 kV and the megavoltage beams. The degree of energy dependence (from MV to 50 kV) was found to be a function of color channel, dose level, and spatial resolution. Conclusions: The dose response curves for GafChromic EBT3 films were found to be weakly dependent on the energy of the photon beams from 6 MV to 15 MV. For very low energy photon (e.g. 50 kV), variation of more than 11% due to the energy-dependence is observed, depending on the absorbed dose, spatial resolution and color channel used.
The dose response curves for GafChromic EBT3 films were found to be weakly dependent on the energy of the photon beams from 6MV to 50kV. The degree of energy dependence varies with color channel, dose and spatial resolution. GafChromic EBT3 films were supplied by Ashland Corp. This work was partially supported by DGAPA-UNAM grant IN102610 and Conacyt Mexico grant 127409.
Minimum absorbed dose limit of Gafchromic EBT2 films were found to be energy dependent. The response curve depends on the low-energy photons and the degree of energy-dependence is a function of absorbed dose This work is partially supported by DGAPA-UNAM grant IN102610 and Conacyt Mexico grant 127409.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.