BackgroundResearch on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position or track tortuosity. High frequency GPS have high power requirements, which necessitates large batteries (often effectively precluding their use on small animals) or reduced deployment duration. Dead-reckoning is an alternative approach which has the potential to ‘fill in the gaps’ between less resolute forms of telemetry without incurring the power costs. However, although this method has been used in aquatic environments, no explicit demonstration of terrestrial dead-reckoning has been presented.ResultsWe perform a simple validation experiment to assess the rate of error accumulation in terrestrial dead-reckoning. In addition, examples of successful implementation of dead-reckoning are given using data from the domestic dog Canus lupus, horse Equus ferus, cow Bos taurus and wild badger Meles meles.ConclusionsThis study documents how terrestrial dead-reckoning can be undertaken, describing derivation of heading from tri-axial accelerometer and tri-axial magnetometer data, correction for hard and soft iron distortions on the magnetometer output, and presenting a novel correction procedure to marry dead-reckoned paths to ground-truthed positions. This study is the first explicit demonstration of terrestrial dead-reckoning, which provides a workable method of deriving the paths of animals on a step-by-step scale. The wider implications of this method for the understanding of animal movement ecology are discussed.Electronic supplementary materialThe online version of this article (doi:10.1186/s40462-015-0055-4) contains supplementary material, which is available to authorized users.
BackgroundSmart tags attached to freely-roaming animals recording multiple parameters at infra-second rates are becoming commonplace, and are transforming our understanding of the way wild animals behave. Interpretation of such data is complex and currently limits the ability of biologists to realise the value of their recorded information.DescriptionThis work presents Framework4, an all-encompassing software suite which operates on smart sensor data to determine the 4 key elements considered pivotal for movement analysis from such tags (Endangered Species Res 4: 123-37, 2008). These are; animal trajectory, behaviour, energy expenditure and quantification of the environment in which the animal moves. The program transforms smart sensor data into dead-reckoned movements, template-matched behaviours, dynamic body acceleration-derived energetics and position-linked environmental data before outputting it all into a single file. Biologists are thus left with a single data set where animal actions and environmental conditions can be linked across time and space.ConclusionsFramework4 is a user-friendly software that assists biologists in elucidating 4 key aspects of wild animal ecology using data derived from tags with multiple sensors recording at high rates. Its use should enhance the ability of biologists to derive meaningful data rapidly from complex data.
Background Recent developments in both hardware and software of animal-borne data loggers now enable large amounts of data to be collected on both animal movement and behaviour. In particular, the combined use of tri-axial accelerometers, tri-axial magnetometers and GPS loggers enables animal tracks to be elucidated using a procedure of ‘dead-reckoning’. Although this approach was first suggested 30 years ago by Wilson et al. (1991), surprisingly few measurements have been made in free-ranging terrestrial animals. The current study examines movements, interactions with habitat features, and home-ranges calculated from just GPS data and also from dead-reckoned data in a model terrestrial mammal, the European badger (Meles meles). Methods Research was undertaken in farmland in Northern Ireland. Two badgers (one male, one female) were live-trapped and fitted with a GPS logger, a tri-axial accelerometer, and a tri-axial magnetometer. Thereafter, the badgers’ movement paths over 2 weeks were elucidated using just GPS data and GPS-enabled dead-reckoned data, respectively. Results Badgers travelled further using data from dead-reckoned calculations than using the data from only GPS data. Whilst once-hourly GPS data could only be represented by straight-line movements between sequential points, the sub-second resolution dead-reckoned tracks were more tortuous. Although there were no differences in Minimum Convex Polygon determinations between GPS- and dead-reckoned data, Kernel Utilisation Distribution determinations of home-range size were larger using the former method. This was because dead-reckoned data more accurately described the particular parts of landscape constituting most-visited core areas, effectively narrowing the calculation of habitat use. Finally, the dead-reckoned data showed badgers spent more time near to field margins and hedges than simple GPS data would suggest. Conclusion Significant differences emerge when analyses of habitat use and movements are compared between calculations made using just GPS data or GPS-enabled dead-reckoned data. In particular, use of dead-reckoned data showed that animals moved 2.2 times farther, had better-defined use of the habitat (revealing clear core areas), and made more use of certain habitats (field margins, hedges). Use of dead-reckoning to provide detailed accounts of animal movement and highlight the minutiae of interactions with the environment should be considered an important technique in the ecologist’s toolkit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.