We examined stressors that have led to profound ecological changes in the Lake Ontario ecosystem and its fish community since 1970. The most notable changes have been reductions in phosphorus loading, invasion by Dreissena spp., fisheries management through stocking of exotic salmonids and control of sea lamprey (Petromyzon marinus), and fish harvest by anglers and double-crested cormorants (Phalacrocorax auritus). The response to these stressors has led to (i) declines in both algal photosynthesis and epilimnetic zooplankton production, (ii) decreases in alewife (Alosa pseudoharengus) abundance, (iii) declines in native Diporeia and lake whitefish (Coregonus clupeaformis), (iv) behavioral shifts in alewife spatial distribution benefitting native lake trout (Salvelinus namaycush), threespine stickleback (Gasterosteus aculeatus), and emerald shiner (Notropis atherinoides) populations, (v) dramatic increases in water clarity, (vi) predation impacts by cormorants on select fish species, and (vii) lake trout recruitment bottlenecks associated with alewife-induced thiamine deficiency. We expect stressor responses associated with anthropogenic forces like exotic species invasions and global climate warming to continue to impact the Lake Ontario ecosystem in the future and recommend continuous long-term ecological studies to enhance scientific understanding and management of this important resource. 490Résumé : On trouvera ici un examen des facteurs de stress qui ont modifié profondément l'écosystème du lac Ontario et sa communauté de poissons depuis 1970. Les changements les plus importants ont été la réduction de l'apport de phosphore, l'invasion des Dreissena spp., la gestion de la pêche, notamment l'empoissonnement de salmonidés exotiques et le contrôle de la grande lamproie marine (Petromyzon marinus), ainsi que la récolte des poissons par les pêcheurs sportifs et les cormorans à aigrette (Phalacrocorax auritus). La réaction à ces facteurs a eu pour conséquen-ces: (i) le déclin de la photosynthèse des algues et de la production du zooplancton épilimnétique, (ii) la diminution de l'abondance du gaspareau (Alosa pseudoharengus), (iii) la réduction des Diporeia indigènes et des grands corégonesCan.
The phytoplankton and productivity of the North American Great Lakes has been studied extensively by Fisheries and Oceans Canada during the past 15 years to monitor the impact of nutrient and contaminant loading on the plankton of the ecosystem. Lakewide cruises were conducted at monthly intervals mainly during the spring to fall period. This provided extensive biomass, species, size, productivity and nutrient concentration data for the Great Lakes. These data were collected using the Uterm6hl inverted microscope technique together with standardized taxonomic, productivity and data-handling procedures. These standardized methodologies were applied to all the Great Lakes which resulted in a comprehensive phycological and ecological data base for the first time. These data form the basis for the evaluation of the complex phenomenon of seasonality.The eutrophic/mesotrophic Lower Great Lakes exhibited well-developed seasonal peaks of high biomass, with inshore-offshore differentiation and spring maxima most pronounced in the inshore region. However, the oligotrophic Upper Great Lakes had low biomass and generally lacked well-developed seasonal patterns. No marked seasonal trends were observed in the ultra-oligotrophic Lake Superior. The seasonality of biomass and various taxonomic groups of phytoplankton showed differentiation between individual lakes and is discussed in detail. The seasonal succession of species provided interesting comparisons between the Lower Great Lakes, which harbour eutrophic and mesotrophic species, and the Upper Great Lakes, which harbour oligotrophic species.Due to the voluminous nature of our data, a general overview has been given for all the Great Lakes with Lake Ontario treated in detail as a case study. The Lake Ontario case study provides the state-of-the-art status ranging from the lakewide surveys of 1970 to the current research with minute organisms such as ultraplankton and picoplankton. X
An indepth phycological comparison is presented for lakes Ontario, Erie, Huron, and Superior, based on extensive lake-wide surveys carried out during the past 12 years. This comparison was achieved by the application of standard and consistent identification, enumeration, and data-processing techniques. The resulting species composition data are voluminous and present a broad picture of the phytoplankton assemblage. Our data base has enabled us to assess the long-term floristic changes, knowledge of which is lacking in the Great Lakes. The species composition reflects more or less the current trophic status of these lakes. The preponderance of nannoplankton and phytoflagellates is the subject of our current experimental research, which includes the fractionation of chlorophyll a and carbon-14 uptake, toxicity studies of heavy metals upon various size fractions of algae, and the role of microalgae and ultraplankton in the transfer of contaminants via zooplankton grazing. The need for phycological research in the Great Lakes is expanding with decreasing eutrophication and the increasing problems of contaminants. The recovery, rehabilitation, and preservation of these vital freshwaters are the primary concern of the continuing Canadian research program in the Great Lakes.
Routine bulk chemical characterization of sediments does not provide useful information on toxicity of sediment bound contaminants. This study reviewed and evaluated the utility of phytoplankton bioassays for evaluation of toxicity of sediment bound contaminants, including state-of-the-art techniques. Several techniques such as Algal Fractionation Bioassays, microcomputer-based toxicity testing and in situ bioassays including plankton cages have been developed and successfully applied in our research at various contaminated sites in the St. Lawrence Great Lakes. These bioassay techniques are sensitive, rapid and inexpensive for screening contaminants. The use and application of such techniques, based on bioavailability and physiological response of micro-organisms, are essential for the detection of environmental perturbations of an ecosystem. Such an early warning system will facilitate the preservation and rehabilitation of the Great Lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.