In practice, often devices are ordered rod structures consisting of a large number of rods. Heat exchangers, fuel assemblies of nuclear reactors, and their cores in the case of using caseless assemblies are examples of such devices. Simulation of heat and mass transfer processes in such devices in porous-body approximation can significantly reduce the required resources compared to computational fluid dynamics (CFD) approaches. The paper describes an integral turbulence model developed for defining anisotropic model parameters of a porous body. The parameters of the integral turbulence model were determined by numerical simulations for assemblies of smooth rods, assemblies with spacer grids, and wire-wrapped fuel assemblies. The results of modeling the flow of a liquid metal coolant in an experimental fuel assembly with local blocking of its flow section in anisotropic porous-body approximation using an integral turbulence model are described. The possibility of using the model of an anisotropic porous body with the integral model of turbulence to describe thermal-hydraulic processes during fluid flow in rod structures is confirmed.
Phase or spatial resolution of secondary electron monitors for, respectively, longitudinal or transverse bunch charge distribution measurements are restricted by the space charge effect of both a primary beam and secondary electron one. Simulation results of the effect in the monitors in an approach of ellipsoidal bunches of the primary beam with uniform charge density and taking into account the field of charges induced by the beam will be presented.
This work aimed to correct the integral turbulence model developed earlier for assemblies of smooth rods. Two variants of the fuel assembly design were considered. In the first variant, the fuel rods were spaced using spacer grids. The presence of a spacer grid does not require a change in the form of the system of equations but leads to a change in the form of the resistance tensor and the generation of turbulence in the spacer grid region. In the second variant, a wire-wrapped fuel bundle was analyzed. The presence of a wire-wrapped fuel bundle requires an additional term in the equation for the conservation of momentum and change in the form of the resistance tensor. The simulations were obtained by CFD code ANSYS CFX and aimed at the determination of parameters involved in an integral model of turbulence being developed for modeling nuclear-reactor cores and heat exchangers in anisotropic porous-body approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.