The properties of a coupled enzyme system (NAD(P)H:FMN-oxidoreductase and luciferase) from luminous bacteria were studied. The enzymes and their substrates were immobilized in polymer gels of different types: starch (polysaccharide) and gelatin (polypeptide). Maximum activity yield (100%) was achieved with the enzymes immobilized in starch gel. An increase in K(m) (app) was observed in both immobilized systems as compared with the soluble coupled enzyme system. Immobilization in starch and gelatin gels increased the resistance of the NAD(P)H:FMN-oxidoreductase and luciferase coupled enzyme system to the effects of external physical and chemical factors. The optimum pH range expanded both to the acidic and alkaline regions. The resistance to concentrated salt solutions and high temperature also increased. The coupled enzyme system immobilized in starch gel (with activation energy 30 kJ/mol) was characterized by the best thermostability. The immobilized coupled enzyme system can be used to produce a stable and highly active reagent for bioluminescent analysis.
Surfactants have a widespread occurrence, not only as household detergents, but also in their application in industry and medicine. There are numerous bioassays for assessing surfactant toxicity, but investigations of their impact on biological systems at the molecular level are still needed. In this paper, luminous marine bacteria and their coupled NAD(P)H:FMN-oxidoreductase + luciferase (Red + Luc) enzyme system was applied to examine the effects of different types of surfactants, including cationic cetyltrimethylammonium bromide (CTAB), non-ionic polyoxyethylene 20 sorbitan monooleate (Tween 80) and anionic sodium lauryl sulfate (SLS), and to assess whether the Red + Luc enzyme system can be used as a more sensitive indicator of toxicity. It was shown that the greatest inhibitory effect of the surfactants on the activity of luminous bacteria and the Red + Luc enzyme system was in the presence of SLS samples. The calculated IC50 and EC50 values of SLS were 10−5 M and 10−2 M for the enzymatic and cellular assay systems, respectively. The results highlight the benefits of using the enzymatic assay system in ecotoxicology as a tool for revealing surfactant effects on intracellular proteins if the cellular membrane is damaged under a long-term exposure period in the presence of the surfactants. For this purpose, the bioluminescent enzyme-inhibition-based assay could be used as an advanced research tool for the evaluation of surfactant toxicity at the molecular level of living organisms due to its technical simplicity and rapid response time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.