Silybin dihemisuccinate sodium salt, a flavonoid used in human therapy of liver dysfunction, has an inhibitory effect in vivo on radiation-induced deactivation of enzymes and peroxidation of membrane lipids in rat liver microsomes. The reactivity of silybin and its phenolic OH groups towards free radicals (OH, N3., (SCN)2.-, Cl3CO2.) in aqueous solution was studied by pulse radiolysis. Absorption spectra for the phenoxyl-type radicals were assigned using structurally similar models. The one-electron reduction potential for silybin at pH 7 (E07 = 0.76 V), determined using the p-methoxy-phenoxyl/phenolate redox couple as reference standard (E07 = 0.72 V, Lind et al. 1990), is related to the 3'-methoxy-4'-OH structure, the exclusive target for one-electron oxidation at pH 7, while the 7-OH and 5-OH groups are prevented from oxidation by 4-keto substitution and intramolecular H-bonding, respectively. The free radical reactivity of silybin compares favourably with poly-OH-substituted flavonoids; however, the latter compounds have been reported to generate potentially toxic oxygen species at a biologically relevant pH.
These observations suggest that amiodarone in vitro and in vivo generates free radicals that may play a role in the pathogenesis of amiodarone toxicity beside other well-established mechanisms, and antioxidants may have a partial protective effect against amiodarone toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.