A deep learning-based binary classifier was proposed to diagnose tuberculosis (TB) and non-TB disease using a chest X-ray radiograph. The proposed classifier comprised two-step binary decision trees, each trained by a deep learning model with convolution neural network (CNN) based on the PyTorch frame. Normal and abnormal images of chest X-ray was classified in the first step. The abnormal images were predicted to be classified into TB and non-TB disease by the second step of the process. The accuracies of first and second step were 98% and 80% respectively. Moreover, re-training could improve the stability of prediction accuracy for images in different data groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.