Large-area high-quality graphene enabled by chemical vapor deposition (CVD) can possibly pave the path for advanced flexible electronics and spintronics. CVD-grown method utilizing liquid carbon precursor has recently been demonstrated as an appealing choice for mass graphene production, thanks to its low cost and safe operation. However, the quality of the graphene film has been the major obstacle for the implementation of the liquid-precursor-based CVD method. Here we report the growth of centimeter-scale easily-transferable single-layer graphene (SLG) using acetone as a liquid carbon precursor. The dry-transer technique was used to prepare the graphene device. The typical mobility of the dry-transferred SLG device is as high as 12500 cm2V-1s-1at room temperature. Thanks to the high quality of the device, the robust quantum Hall effect can survive up to room temperature. The excellent device quality also enables us to observe the Shubnikov-de Haas oscillation in the low magnetic field regime and systemically study the leading scattering mechanism. We extracted both the transport scattering time τt and the quantum scattering time τq over a wide range of carrier density. The ratio of the scattering times suggests that the charged-impurity (CI) resided near the surface of the graphene restricted the device performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.