Rapid growth of the volume of interactive questions available to the students of modern E-Learning courses placed the problem of personalized guidance on the agenda of E-Learning researchers. Without proper guidance, students frequently select too simple or too complicated problems and ended either bored or discouraged. This paper explores a specific personalized guidance technology known as adaptive navigation support. We developed JavaGuide, a system, which guides students to appropriate questions in a Java programming course, and investigated the effect of personalized guidance a three-semester long classroom study. The results of this study confirm the educational and motivational effects of adaptive navigation support.
The increased volumes of online learning content produced two problems: how to help students to find the most appropriate resources and how to engage them in using these resources. Personalized and social learning have been suggested as potential ways to address these problems. Our work presented in this paper combines the ideas of personalized and social learning in the context of educational hypermedia. We introduce Progressor, an innovative Web-based tool based on the concepts of social navigation and open student modeling that helps students to find the most relevant resources in a large collection of parameterized self-assessment questions on Java programming. We have evaluated Progressor in a semester-long classroom study, the results of which are presented in this paper. The study confirmed the impact of personalized social navigation support provided by the system in the target context. The interface encouraged students to explore more topics attempting more questions and achieving higher success rates in answering them. A deeper analysis of the social navigation support mechanism revealed that the top students successfully led the way to discovering most relevant resources by creating clear pathways for weaker students.
Different sources of data about students, ranging from static demographics to dynamic behavior logs, can be harnessed from a variety sources at Higher Education Institutions. Combining these assembles a rich digital footprint for students, which can enable institutions to better understand student behaviour and to better prepare for guiding students towards reaching their academic potential. This paper presents a new research methodology to automatically detect students "at-risk" of failing an assignment in computer programming modules (courses) and to simultaneously support adaptive feedback. By leveraging historical student data, we built predictive models using students' offline (static) information including student characteristics and demographics, and online (dynamic) resources using programming and behaviour activity logs. Predictions are generated weekly during semester. Overall, the predictive and personalised feedback helped to reduce the gap between the lower and higher-performing students. Furthermore, students praised the prediction and the personalised feedback, conveying strong recommendations for future students to use the system. We also found that students who followed their personalised guidance and recommendations performed better in examinations.
Abstract. In this paper, we present a novel approach to integrate social adaptive navigation support for self-assessment questions with an open student model using QuizMap, a TreeMap-based interface. By exposing student model in contrast to student peers and the whole class, QuizMap attempted to provided social guidance and increase student performance. The paper explains the nature of the QuizMap approach and its implementation in the context of selfassessment questions for Java programming. It also presents the design of a semester-long classroom study that we ran to evaluate QuizMap and report the evaluation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.