Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong Internal gravity waves are propagating disturbances of the ocean's density stratification. Their physics resembles that of surface gravity waves but with buoyancy rather than gravity providing their restoring force -making them much larger (10's to 100's of meters instead of 1 to 10 meters) and slower (hours instead of seconds). Generated primarily by tidal flow past seafloor topography and winds blowing on the sea surface, and typically having multi-kilometer-scale horizontal wavelengths, their estimated 1 TW of deep-sea dissipation is understood to play a crucial role in the ocean's global redistribution of heat and momentum 12 . A major challenge is to improve understanding of internal wave generation, propagation, steepening and dissipation, so that the role of internal waves can be more accurately incorporated in climate models.The internal waves that originate from the Luzon Strait on the eastern margin of the South China Sea (SCS) are the largest documented in the global oceans ( Figure 1).As the waves propagate west from the Luzon Strait they steepen dramatically ( Figure 1a), producing distinctive solitary wave fronts evident in sun glint and synthetic aperture radar (SAR) images from satellites ( Figure 1b). When they shoal onto the continental slope to the west, the downward displacement of the ocean's layers associated with these solitary waves can exceed 250 m in 5 minutes 8 . On such a scale, these waves pose hazards for underwater navigation and offshore drilling 4 , and supply nutrients from the deep ocean that nourish coral reefs 1 and pilot whale populations that forage in their wakes 13 .Over the past decade a number of field studies have been conducted in the region; this work has been comprehensively reviewed 10,11 . All of these studies, however, focused on the propagation of the internal waves across the SCS and their interactions with the continental shelf of China. Until the present study there had been no substantial in situ data gathered at the generation site of the Luzon Strait, in large part because of the extremely challenging operating conditions. A consequence has been persistent 5 confusion regarding the nature of the generation mechanism 11 ; an underlying cause being the sensitivity of the models employed to the system parameters, such as the chosen transect for a two-dimensional model, the linear internal wave speed or the assumed location of the waves' origin within the Luzon Strait. Furthermore, the lack of in situ data from the Luzon Strait has meant an inability to test numerical predictions of energy budgets 9 and no knowledge of the impact of the Kuroshio on the emergence of internal solitary waves 11 .The goal of IWISE is to obtain the first comprehensive in situ data set from the Luzon Strait, which in combination with high-resolution three-dimensional numerical modeling supports a cradle-to-grave picture ...
Mesoscale eddies in the subtropical oligotrophic ocean are ubiquitous and play an important role in nutrient supply and oceanic primary production. However, it is still unclear whether these mesoscale eddies can efficiently transfer CO2 from the atmosphere to deep waters via biological pump because of the sampling difficulty due to their transient nature. In 2007, particulate organic carbon (POC) fluxes, measured below the euphotic zone at the edge of warm eddy were 136–194 mg-C m−2 d−1 which was greatly elevated over that (POC flux = 26–35 mg-C m−2 d−1) determined in the nutrient-depleted oligotrophic waters in the Western North Pacific (WNP). In 2010, higher POC fluxes (83–115 mg-C m−2 d−1) were also observed at the boundary of mesoscale eddies in the WNP. The enhanced POC flux at the edge of eddies was mainly attributed to both large denuded diatom frustules and zooplankton fecal pellets based on scanning electron microscopy (SEM) examination. The result suggests that mesoscale eddies in the oligotrophic waters in the subtropical WNP can efficiently increase the oceanic carbon export flux and the eddy edge is a crucial conduit in carbon sequestration to deep waters.
The relationship between the Kuroshio volume transport east of Taiwan (~24°N) and the impinging mesoscale eddies is investigated using 8-year reanalysis of a primitive equation ocean model that assimilates satellite altimetry and SST data. The mean and fluctuations of the model Kuroshio transport agree well with the available observations. Analysis of model dynamic heights and velocity fields reveals three dominant eddy modes. The first mode describes a large eddy of~500 km in diameter, centered at 22°N. The second mode describes a pair of the north-south counter-rotating eddies of~400 km in diameter each, centered at 23°and 20°N, respectively. The third mode describes a pair of the east-west counter-rotating eddies of~300 km in diameter each, centered at 21°N. The associated velocity fields indicate eddies extending to 600-700 m in depth with vertical shears concentrated in the upper 400 m. All three modes and the model Kuroshio transport have similar dominant timescales of 70-150 days and generally are coherent. The decreased Kuroshio volume transports typically are associated with the impinging cyclonic eddies and the increased transports with the anticyclonic eddies. Selected drifter trajectories are presented to illustrate the three eddy modes and their correspondence with the varying Kuroshio transports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.