При изучении агрегации углеродных нанотрубок в условиях гидродинамической неустойчивости высыхающей капли на гидрофобных и гидрофильных подложках выявлена определяющая роль гидродинамических течений. Установлено, что протекание энтропийной агрегации нанотрубок в капле под действием аэросила зависит от типа подложки. Работа выполнена при финансовой поддержке РФФИ (проект № 16-43-360281 р_а).
Изучены электрохимические свойства гибких печатных электродов, модифицированных гибридным материалом трипсин – углеродные нанотрубки. Обнаружена зависимость воль тамперных характеристик электродов от присутствия казеина. Полученные структуры могут быть использованы в качестве биосенсора для применения в пищевой промышленности. Авторы выражают благодарность Холявке Марине Геннадьевне и Королевой Виктории Александровне за помощь в проведении экспериментов. Выражаем благодарность Центру коллективного пользования научным оборудованием Воронежского государственного университета за активную поддержку
В стандартных условиях проведен модельный эксперимент по влиянию сил обеднения на процесс высыхания капли взвесей невзаимодействующих частиц аэросил – полистирольный латекс. Впервые обнаружен быстропротекающий процесс фазового превращения аэросила в кристаллический SiO2 в течение десятков секунд, сопровождающийся резким изменением цвета раствора от светло-голубого до синего. Обнаружена дифракционная картина, свидетельствующая о нанокристаллической природе зародышеобразования новой фазы. Фазообразование интерпретировано как результат действия неравновесной силы обеднения в условиях гидродинамической неустойчивости высыхающей капли. REFERENCES Tret’yakov Yu. D. Self-organisation processes in the chemistry of materials. Uspekhi khimii [Russian Chemical Reviews], 2003, v. 72(8), pp. 651–679. https://doi.org/10.1070/RC2003v072n08ABEH000836 Kushnir S. E., Kazin P. E., Trusov L. A., Tret’yakov Yu. D. Self-organization of micro- and nanoparticles in ferrofl uids. Uspekhi khimii [Russian Chemical Reviews], 2012, v. 81(6), pр. 560–570. https://doi.org/10.1070/RC2012v081n06ABEH004250 Lebedev-Stepanov P. V., Kadushnikov R. M., Molchanov S. P., Ivanov A. A., Mitrokhin V. P., Vlasov K. O., Rubin N. I., Yurasik G. A., Nazarov V. G., Alfi mov M. V. Self-assembly of nanoparticles in the microvolume of colloidal solution: Physics, modeling, and experiment. Rossiiskie nanotekhnologii [Nanotechnologies in Russia], 2013, v. 8(3-4), pр. 137–162. https://doi.org/10.1134/S1995078013020110 Walker D. A., Kowalczyk B., Cruz M. O., Grzybowski B. A. Electrostatics at the nanoscale. Nanoscale, 2011, v. 3(4), pp. 1316–1344. https://doi.org/10.1039/C0NR00698J Ouyang Q., Castets V., Boissonade J., et al. Sustained patterns in chlorite–iodide reactions in a onedimensional reactor. J. Chem. Phys., 1991, v. 95(1), pp. 351–360. https://doi.org/10.1063/1.461490 Tarasevich Yu. Yu., Pravoslavnova D. M. Kachestvennyy analiz zakonomernostey vysykhaniya kapli mnogokomponentnogo rastvora na tverdoy podlozhke [Qualitative analysis of patterns of drying of a drop of a multicomponent solution on a solid substrate], Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2007, vol. 77, no. 2. pp. 17–21. URL: http://journals.ioffe. ru/articles/viewPDF/9047 (in Russ.) Faigl’ F., Anger V. Kapel’nyi analiz neorganicheskikh veshchestv [Drip Analysis of Inorganic Substances]. Moscow, Mir Publ., 1976, v. 1, 390 p., v. 2, 320 p. (in Russ.) Yakhno T. A., Kazakov V. V., Sanina O. A., Sanin A. G., Yakhno V. G. Kapli biologicheskikh zhidkostey, vysykhayushchie na tverdoy podlozhke: dinamika morfologii, massy, temperatury i mekhanicheskikh svoystv [Drops of biological fluids drying on a solid substrate: dynamics of morphology, mass, temperature, and mechanical properties]. Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2010, v. 80(7), pp. 17–23. URL: http://journals.ioffe.ru/articles/viewPDF/10043 (in Russ.) Alfi mov M. V., Kadushnikov R. M., Shturkin N. A., Alievskii V. M., Lebedev-Stepanov P. V. Immitatsionnoe modelirovanie protsessov samoorganizatsii nanochastits [Simulation modeling of self-organization processes of nanoparticles], Rossiiskie nanotekhnologii [Nanotechnologies in Russia], 2006, v. 1(1–2), pp. 127–133. (in Russ.) Lebedev-Stepanov P. V., Gromov S. P., Molchanov S. P., Chernyshov N. A., Batalov I. S., Sazonov S. K., Lobova N. A., Shevchenko N. N., Men’shikova A. Yu., Alfimov M. V. Controlling the self-assemblage of modifi ed colloid particle ensembles in solution microdropletsRossiiskie nanotekhnologii [Nanotechnologies in Russia], 2011, v. 6(9–10), 569–578, pp. 72–78. https://doi.org/10.1134/S1995078011050119 Andreeva L. V., Novoselova A. S., Lebedev-Stepanov P. V., Ivanov D. A., Koshkin A. V., Petrov A. N., Alfi mov M. V. Zakonomernosti kristallizatsii rastvorennykh veshchestv iz mikrokapli [Patterns of crystallization of dissolved substances from microdrops]. Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2007, v. 77(2), pp. 22–30. URL: http://journals.ioffe.ru/articles/view-PDF/9048 (in Russ.) Barash L. Yu. Marangoni convection in an evaporating droplet: Analytical and numerical descriptions. International Journal of Heat and Mass Transfer, 2016, v. 102, pp. 445–454. https://doi.org/10.1016/j.ijh eatmasstransfer.2016.06.042 al Bityutskaya L. A., Zhukalin D. A., Tuchin A. V., Frolov A. A., Buslov V. A. Thermal dissipative structures in the case of carbon nanotubes aggregation in drying drops. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphase], 2014, v. 16(4), pp. 425–430. URL: https://journals.vsu.ru/kcmf/ article/view/856/937 (in Russ.) Asakura S., Oosawa F. Interaction between particles suspended in solutions of macromolecules. Polymer Science Part A: General Papers, 1958, v. 33(126), pp. 183–192. https://doi.org/10.1002/pol.1958.1203312618 Minton A. P. How can biochemical reactions within cells differ from those in test tubes? Journal of Cell Science, 2015, v. 119(14), pp. 2863–2869. https://doi.org/10.1242/jcs.03063 Chebotareva N. A., Kurganov B. I., Livanova N. B. Biochemical effects of molecular crowding. Biohimija [Biochemistry], 2004, v. 69(11), pp. 1239–1251. https://doi.org/10.1007/s10541-005-0070-y Bishop K. J., Wilmer C. E., Soh S., Grzybowski B. A. Nanoscale forces and their uses in self-assembly. Small, 2009, v. 5(14), p. 1600–1630. https://doi.org/10.1002/smll.200900358 Minton A. P. The infl uence of macromolecular crowding and macromolecular confi nement on biochemical reactions in physiological media. Journal of Biological Chemistry, v. 276(14), pp. 10577–10580. https://doi.org/10.1074/jbc.r100005200 Huber F., Strehle D., Schnauss J., Kas J. Formation of regularly spaced networks as a general feature of actin bundle condensation by entropic forces. New J. Physics, 2015, v. 17(4), p. 043029. https://doi.org/10.1088/1367-2630/17/4/043029 Jiang H., Wada H., Yoshinaga N., Sano M. Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. Physical Review Letters, 2009, v. 102(20), p. 208301. https://doi.org/10.1103/physrevlett.102.208301 Deng H., Li G., Liu H. Assembling of three-dimensional crystals by optical depletion force induced by a single focused laser beam. Optics Express, 2012, v. 20(9), p. 9616. https://doi.org/10.1364/oe.20.009616 Wulfert R., Seiferta U., Speck T. Nonequilibrium depletion interactions in active microrheology. Soft Matter, 2017, v. 13(48), p. 9093–9102. https://doi.org/10.1039/c7sm01737e Dolgih I. I., Bitutskaya L. A. Entropy driven aggregation of CNT in a drying drop on hydrophilic and hydrophobic substrate. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphase], 2018, v. 20(4), p. 664–668. https://doi.org/10.17308/kcmf.2018.20/635
Аннотация. Изучены особенности взаимодействия слоистых прекурсоров с микроплазмой искрового разряда. Рассмотрены механизмы формирования самоорганизованных микрочастиц и влияние природы исходных материалов на форму частиц.Ключевые слова: микроплазма, микрочастицы, слоистые прекурсоры, искровой разряд, самоорганизация.Abstract. We studied the action of the pulsed micro plasma on the layered materials with the different interlayer bond energy. The pulsed micro plasma was generated by the spark discharges between the two pieces of studied material in dry air at normal conditions in an open reactor. The 20kV spark discharges were generated with induction coil and had the duration from 10 to 20 us, controlled with an oscilloscope with a capacitive sensor. The generated particles were accumulated on the duct tape underneath the electrodes. Three types of particles were observed -droplets, fractals and planar structures. Droplets were produced by surface melting of the electrode material with the subsequent separation of a drop. The drops had different forms depending on the material. Sb produced spheres, Bi formed spheres covered symmetrically with round tips, InSb produced twisted structures. The planar structures were produced by the fi eld exfoliation of the electrode material. Fractals were produced on the electrodes because of the circular evaporation and condensation of the material in pulsed plasma. The ratio of these three effects was determined by the degree of anisotropy of the processed material and by its melting point. Antimony produced many droplets, fractals and layers, because of its low melting point and high anisotropy. Bi produced droplets, fractals and a little amount of exfoliated layers because of its low anisotropy. SiC did not melt or evaporate at the temperature of the discharge but exfoliated, so it produced planar structures. The results may be used in the production of micro and nano particles needed to create hybrid materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.