The objective of this study was to find out the effect of L-carnitine on oocyte maturation and subsequent embryo development, with L-carnitine-mediated alteration if any in transcript level of antioxidant enzymes (GPx, Cu/Zn-SOD (SOD1) and Mn-SOD (SOD2) in oocytes and developing sheep embryos produced in vitro. Different concentrations of L-carnitine (0 mm, 2.5 mm, 5 mm, 7.5 mm and 10 mm) were used in maturation medium. Oocytes matured with 10 mm L-carnitine showed significantly (p < 0.05) higher cleavage (66.80% vs 39.66, 41.76, 44.64, 64.31%), morula (48.50% vs 20.88, 26.01, 26.99, 44.72%) and blastocyst (33.22% vs 7.66, 9.19, 10.71, 28.57%) percentage as compared to lower concentrations (0 mm, 2.5 mm, 5 mm and 7.5 mm). Cleavage percentage between 10 mm and 7.5 mm L-carnitine were not significantly different. Maturation rate was not influenced by supplementation of any experimental concentration of L-carnitine. There was a significant (p < 0.05) decrease in intracellular ROS and increase in intracellular GSH in 10 mm L-carnitine-treated oocytes and embryos than control group. Antioxidant effect of L-carnitine was proved by culturing oocytes and embryos with H2O2 in the presence of L-carnitine which could be able to protect oocytes and embryos from H2O2-induced oxidative damage. L-carnitine supplementation significantly (p < 0.05) upregulated the expression of GPx and downregulated the expression of SOD2 genes, whereas the expression pattern of SOD1 and GAPDH (housekeeping gene) genes was unaffected in oocytes and embryos. It was concluded from the study that L-carnitine supplementation during in vitro maturation reduces oxidative stress-induced embryo toxicity by decreasing intracellular ROS and increasing intracellular GSH that in turn improved developmental potential of oocytes and embryos and alters transcript level of antioxidant enzymes.
The objective of this was to establish the effects of red spectrum of light (650 nm, treated n = 12) and normal spectrum of light (450 nm control = 12) on GnRH-I mRNA expression, amplitude and frequency of luteinizing hormone (LH), and egg production from 72-82 weeks of age in white leghorn hens. Birds exposed to red spectrum of wavelength significantly improved (P < 0.01) steroid hormone, and egg production improved over old laying 72 to 82 weeks. Weekly interval profiles followed the same pattern. At 77th weeks of age blood, samples from both the groups were collected at every 3 h for 36 h to study the pulsatile secretion of LH surges. Plasma LH concentration was higher (P < 0.01) in treated birds with more number of frequencies and amplitude LH surges in plasma of treated birds. LH frequencies were more pronounced and advanced during 36 h of sampling at 3 h interval in treated birds. Weekly interval of plasma LH, E2β, and P(4) concentrations increased (P < 0.01) in treated birds from 72 to 82 weeks of age. GnRH-I mRNA concentration was significantly (P < 0.01) higher in birds exposed to red spectrum of light compared to controls. It is hypothesized that exposure of birds to red spectrum of light-enhanced (P < 0.01) GnRH-I mRNA with more number of yellow yolky follicles was found in birds exposed to red spectrum of light during 77 days (72-82 weeks of age) of experimental period. It is concluded that higher levels of GnRH-I mRNA, LH, E2β, and P(4) concentration with lower incidence of pause days enabled the birds to lay more eggs even later in the productive period by modulating the wavelengths of light under normal husbandry conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.