The results obtained in this study demonstrated that experimentally induced alimentary muscular dystrophy (MD) in Cobb 500 broiler chickens resulted in increased plasma concentrations of malondialdehyde (MDA), deviations in activities of erythrocyte antioxidant enzymes Cu,Zn-SOD (decrease), and CAT (increase) as well as reduction in plasma concentrations of trace elements Cu, Zn, and Se in affected birds. These data evidenced the presence of oxidative stress in birds with MD, reared both under conditions of ecological comfort and ecological stress. The increased MDA and САТ levels and the reduced Cu,Zn-SOD, Cu, Zn, and Se concentrations in healthy chickens reared under unfavorable microclimatic conditions such as higher air temperature and humidity, higher ammonia concentrations, and lower light intensity were indicative about an induced ecological stress. After the 10-day oral treatment with a selenium-containing preparation, the levels of MDA, Cu,Zn-SOD, CAT, Cu, Zn, and Se attained their normal values in chickens with MD, reared under ecologically comfortable conditions. According to our results, ecological stress was shown to exert independently a significant adverse effect upon the levels of the studied parameters and possibly to be a cause for their slower and not complete normalization despite the selenium therapy in experimental broiler chickens.
17 beta-estradiol (E2) and progesterone (P) treatment of immature female rats (10 micrograms/100 g body weight) respectively resulted in 1.38-fold (p < 0.02) and 1.42-fold (p < 0.02) increase in the uterine polyamine oxidase activity, and 2.45-fold (p < 0.001) and 1.43-fold (p < 0.02) increase in the uterine diamine oxidase activity, as compared to the controls. E2 caused a 5-fold (p < 0.05) and a 1.36-fold (p < 0.05) increase in putrescine and spermidine concentration respectively in rat uterus. Increases of 1.7-fold (p < 0.02) and 1.6-fold (p < 0.05) in putrescine and spermine concentration were determined in the P-treated uterus, as compared to the controls. The spermidine/spermine ratio, which is regarded as an index of growth rate, was higher in the E2-treated uterus and lower in the P-treated uterus than in the control uterus. No statistically significant hormonal effects were estimated in the immature liver. The data reported suggest the possibility of an involvement of polyamine-oxidizing enzymes in the modulation of polyamine concentrations in rat uterus by the female sex hormones.
In the present study developmental patterns of renal polyamine-oxidizing enzymes polyamine oxidase (PAO) and diamine oxidase (DAO) in male and female ICR mice were demonstrated. The effects of testosterone (10 micrograms/100g body weight) on renal PAO and DAO activities were also studied. The differences between sexes in both PAO and DAO activities were most clearly expressed in the immature kidney. At the age of 20 days PAO and DAO activities were 1.52 fold (p < 0.01) and 1.75 (p < 0.02) respectively higher in male mouse kidney than in female. Maturational processes reflected in significant increases in polyamine-oxidizing enzyme activities mainly in female mouse kidney, comparable with the gain in the kidney wet weight. Our data show that testosterone is able to influence renal PAO and DAO activities in addition to the well-known stimulation of polyamine biosynthesis. The hormonal effects were sex and age dependent. The influence of testosterone on renal PAO activity was mainly age dependent. The slight stimulation of renal PAO activity observed in 20- and 50-day old mice, 24 h after testosterone administration, change with a decrease in the enzyme activity at the age of 70 days. The effects of testosterone on renal DAO activity were mainly sex dependent. Testosterone caused stimulation of DAO activity with a very close magnitude (nearly twice) in female mouse kidney, independently of the age of mice. In contrast, in male mice the hormone treatment resulted in a statistically significant increase in renal DAO activity at the age of 70 days (1.3 fold, p < 0.05) only. It could be suggested that our data indicate the different contribution of renal PAO and DAO in androgen regulation of polyamine levels, depending on sex and the stage of the postnatal development.
Ornithine decarboxylase (ODC) and diamine oxidase (DAO) are important enzymes involved in the metabolism of polyamines (putrescine, spermidine and spermine). The influence of testosterone (T) and 17, beta-estradiol (E2) on the activity of ODC and DAO was examined in cultivated normal rat kidney (NRK) epithelial cells. The results showed an increase in enzyme activities 4 hours or 12 hours after hormonal treatment. Both T and E2 led to a significant increase (1.6-fold) in ODC protein level as compared to the controls. Cellular concentration of spermidine and spermine increased (2.2- and 2.6-fold respectively) 4 hours after T addition. A higher levels in concentrations of putrescine (1.4-fold) and spermine (1.5-fold) 12 hours after E2 treatment were observed. These results suggest that the biosynthesis and terminal oxidation of the polyamines in NRK epithelial cells are androgen- and estrogen-mediated and depend on the hormonal sensitivity of the cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.