Two experiments were conducted. In expt. 1, a total of fifty-four pigs (L×Y×D, 56.14±1.7 kg) were used for a feeding trial to determine the effect of wet feeding of a commercial-type diet without food waste (FW). Treatments were dry (Control), wet (WF) and wet+dry feeding (WDF). For wet feeding, the diet was mixed with water at a ratio of 1:2.5 (feed:water). A wet feed was given during the whole experimental period for the WF group, but the dry feed was given during the finisher period for the WDF group. In expt. 2, a total of fifty-four pigs (L×Y×D, 55.7±1.8 kg) were used for a feeding trial to determine the effect of wet feeding of FW. Treatments were a commercial-type dry (Control), wet fermented food waste (WFFW) and WFFW+dry feeding (WFFW+DF). For wet feeding of fermented food waste, however, some ingredients (concentrate) were added to make nutrient contents comparable to the control diet. The FW collected was ground (≤5 mm), heated with a steam jacket (140±3°C) and fermented with probiotics for one day in a steel container at 30-40°C. For the WFFW group, the wet feed was given during the whole experimental period, but a dry feed was given during finisher period for the WFFW+DF group. In expt. 1, during the grower period, pigs fed wet feed showed higher average daily gain (ADG) and feed conversion ratio (FCR) than those fed only dry feed (p<0.05). During the finisher period, pigs in the WDF group showed better ADG and FCR than the control group. During the entire experimental period, pigs in the WDF group grew faster (p<0.05) than those in the control group, and the same trend was found in FCR. Also, dressing percentage, backfat thickness, lean %, and pork color were not affected by the wet feeding of diets in this study. In expt. 2, during the grower period, pigs fed diets containing FW showed lower (p<0.05) ADG than those fed the control diet. But FCR was better (p<0.05) in pigs fed FW than in the control group. During the finisher period, pigs in the WFFW+DF group grew faster (p<0.05) than those in the control and WFFW groups. During the entire experimental period, pigs fed the control diet showed better ADG (p<0.05) than those fed FW, but feed intake and FCR were vice versa. Dressing percentage was lower (p<0.05) in the WFFW than in the control group, but backfat was thinner in the WFFW group than in the control group. In summary, it can be concluded that wet feeding of formula feed can improve daily gain, however, feeding fermented wet food waste may reduce daily gain of finishing pigs, even though it was fermented and the nutrient was fortified with concentrates. In addition, dry feeding of a formula feed during the finishing period can improve daily gain in pigs fed a wet feed with or without food waste during the grower period.
This experiment was conducted to evaluate the effects of feeding different levels of lacquer (Rhus verniciflua Stokes) meal on the growth performance, carcass traits, fatty acid profile and meat quality of longissmuss dorsi (LD) muscle in finishing pigs. Pigs (n = 117; Landrace×Yorkshire×Duroc; initial body weight 80±0.4 kg) were allotted to three dietary treatments and fed lacquer at 0, 2 and 4% of the diet for five weeks. Inclusion of lacquer meal in the diets of pigs had no influence on their growth performance, carcass yield, loin eye area and fat free lean; however, pigs fed lacquer diets had lower backfat (linear, p = 0.006; quadratic, p = 0.004). Pigs fed increasing levels of lacquer meal had lower moisture (linear, p<0.001; quadratic, p = 0.008), crude fat (linear, p<0.001) and crude protein (linear, p<0.001; quadratic, p = 0.002) in LD muscle. The LD muscle of pigs fed lacquer meal had lower pH (linear and quadratic, p<0.05) at 6, 8 and 10 days, and linearly lower thio-barbituric acid reactive substances (TBARS, p<0.01) at 8 and 10 days and water holding capacity (WHC, p<0.05) at 3, 6, 8 and 10 days. The fatty acid composition of LD muscle revealed linearly lower stearic (p = 0.034) and total saturated fatty acid (p = 0.049) with increasing dietary lacquer meal levels. In general, higher lightness, redness and yellowness values were observed in LD muscle of pigs fed 2% lacquer meal on day 0 and subsequently on 3, 6, 8 and 10 days of refrigerated storage. The results of the current study suggest that lacquer meal can be incorporated up to 4% in the diet of finishing pigs without any adverse effects on performance; moreover, improvements in the meat quality during refrigerated storage can be obtained by inclusion of lacquer meal in the diet of finishing pigs.
In this study, pigs [n=117; (Landrace × Yorkshire) × Duroc; 64±0.5 kg initial body weight] were used to investigate the effect of feeding different levels of lacquer (Rhus verniciflua Stokes) meal on performance, carcass traits and quality of meat kept under refrigeration at 3±1 o C. The pigs were randomly allotted to 3 treatments on the basis of body weight and sex and each treatment was replicated 3 times (13 pigs in each replicate). Lacquer meal in sawdust form obtained from the stem bark and heartwood of sun-dried lacquer trees was added to the grower and finisher diets at 0, 20 and 40 g/kg diet. The experimental diets were fed for 8 wk. Inclusion of lacquer meal had no influence (p>0.05) on growth performance of pigs. Improvement in carcass traits and decreased back fat thickness were noticed in pigs fed diets added with 20 and 40 g/kg lacquer meal. Longissimus muscle obtained from pigs fed lacquer meal had higher moisture and lower fat content, thiobarbituric acid reactive substances and water holding capacity. Meat from lacquer fed pigs was also darker and redder. The data indicates that lacquer meal can be incorporated up to 40 g/kg in the diet of fattening pigs without affecting growth performance. Also, lacquer meal increases carcass lean content and improves the oxidative stability of the meat.
A study was conducted to evaluate seasonal variations in chemical composition of food waste (FW) and its feeding effects on growth performance and pork quality in finishing pigs. FW was collected for 1 year (6 times a month) to establish a database for use of FW as a feed ingredient. For a feeding trial (8 weeks), a total of 117 pigs (L×Y×D; 54.80±4.60kg) were used to evaluate the processing effects of FW. Treatments were: Control (a corn-soybean meal diet without FW), simple dried FW (SD) and vacuum fermented FW (VF). The gross energy, crude protein, crude fat, ash, calcium and phosphorus in FW (DM, average of 4 seasons) were 5,111kcal/kg, 22.92%, 14.31%, 15.48%, 2.7% and 1.05%, respectively. Among seasons, the energy and crude protein contents were the highest (p<0.05) in winter and summer, respectively. In lactic acid bacterial counts, there was no difference between SD and VF. Pigs fed the control diet grew faster (p<0.05) than those fed diets containing food wastes, but not feed conversion ratio. There were no differences in production traits between SD and VF. No differences were also found in dressing percentage, backfat thickness, and pork quality (color, drip loss and TBARS) among treatments. The feed cost ( /kg body weight) was lower in pigs fed FW than those fed a control diet. In conclusion, a pelleted diet containing food waste less than 20% would reduce feed cost in finishing pigs. However, it seems that a vacuum fermentation of food waste is not necessary for diet processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.