Two experiments were conducted. In expt. 1, a total of fifty-four pigs (L×Y×D, 56.14±1.7 kg) were used for a feeding trial to determine the effect of wet feeding of a commercial-type diet without food waste (FW). Treatments were dry (Control), wet (WF) and wet+dry feeding (WDF). For wet feeding, the diet was mixed with water at a ratio of 1:2.5 (feed:water). A wet feed was given during the whole experimental period for the WF group, but the dry feed was given during the finisher period for the WDF group. In expt. 2, a total of fifty-four pigs (L×Y×D, 55.7±1.8 kg) were used for a feeding trial to determine the effect of wet feeding of FW. Treatments were a commercial-type dry (Control), wet fermented food waste (WFFW) and WFFW+dry feeding (WFFW+DF). For wet feeding of fermented food waste, however, some ingredients (concentrate) were added to make nutrient contents comparable to the control diet. The FW collected was ground (≤5 mm), heated with a steam jacket (140±3°C) and fermented with probiotics for one day in a steel container at 30-40°C. For the WFFW group, the wet feed was given during the whole experimental period, but a dry feed was given during finisher period for the WFFW+DF group. In expt. 1, during the grower period, pigs fed wet feed showed higher average daily gain (ADG) and feed conversion ratio (FCR) than those fed only dry feed (p<0.05). During the finisher period, pigs in the WDF group showed better ADG and FCR than the control group. During the entire experimental period, pigs in the WDF group grew faster (p<0.05) than those in the control group, and the same trend was found in FCR. Also, dressing percentage, backfat thickness, lean %, and pork color were not affected by the wet feeding of diets in this study. In expt. 2, during the grower period, pigs fed diets containing FW showed lower (p<0.05) ADG than those fed the control diet. But FCR was better (p<0.05) in pigs fed FW than in the control group. During the finisher period, pigs in the WFFW+DF group grew faster (p<0.05) than those in the control and WFFW groups. During the entire experimental period, pigs fed the control diet showed better ADG (p<0.05) than those fed FW, but feed intake and FCR were vice versa. Dressing percentage was lower (p<0.05) in the WFFW than in the control group, but backfat was thinner in the WFFW group than in the control group. In summary, it can be concluded that wet feeding of formula feed can improve daily gain, however, feeding fermented wet food waste may reduce daily gain of finishing pigs, even though it was fermented and the nutrient was fortified with concentrates. In addition, dry feeding of a formula feed during the finishing period can improve daily gain in pigs fed a wet feed with or without food waste during the grower period.