The growing need to recover power from low grade heat sources, has led to a review of the possibilities for producing systems for cost effective power production at outputs as little as 20-50kWe. It is shown that by utilizing the full potential of screw expanders instead of turbines, it is possible to produce Organic Rankine Cycle (ORC) systems at these outputs, which can be installed for a cost in the range of $1500 to $2000 /kWe of net output. This low capacity cost combined with the ORC's fuel-free specification results in a very favorable value proposition.
Stage pressure ratios in screw compressors, operating without oil injection, are limited by deformation of the rotors, caused by the temperature rise of the compressed gas. Rotor cooling would reduce this restriction. As a result of identification of the main modes of heat transfer both in the rotors and between the rotors and their surroundings and the relative significance of each, a novel procedure is suggested to cool the rotors by injection of minute quantities of a volatile fluid. By this means the compressed gas should attain higher temperatures without rotor distortion. To confirm these concepts and quantify both the heat transfer rates and the rate of liquid injection required for rotor cooling, both a one dimensional flow study and a more complex 3-D numerical analysis were performed, the latter with the aid of a CFD code. The results indicated that the rotors could be maintained at a far lower temperature than that of the discharged gas by flash evaporative cooling, as a result of injecting a fractional percentage by mass of a volatile fluid. This was confirmed by experiment. This technique may be used to operate dry compressors at substantially higher pressure ratios than are currently possible in such machines. It is also shown that only minor design changes are needed to implement it.
The use of two-phase screw expanders in power generation cycles can achieve an increase in the utilisation of available energy from a low-temperature heat source when compared with more conventional single-phase turbines. The efficiency of screw expander machines is sensitive to expansion volume ratio, which, for given inlet and discharge pressures, increases as the expander inlet vapour dryness fraction decreases. For single-stage screw machines with low inlet dryness, this can lead to underexpansion of the working fluid and low isentropic efficiency. The cycle efficiency can potentially be improved by using a two-stage expander, consisting of a machine for low-pressure expansion and a smaller high-pressure machine connected in series. By expanding the working fluid over two stages, the built-in volume ratios of the two machines can be selected to provide a better match with the overall expansion process, thereby increasing the efficiency. The mass flow rate though both stages must be matched, and the compromise between increasing efficiency and maximising power output must also be considered. This study is based on the use of a rigorous thermodynamic screw machine model to compare the performance of single- and two-stage expanders. The model allows optimisation of the required intermediate pressure in the two-stage expander, along with the built-in volume ratio of both screw machine stages. The results allow specification of a two-stage machine, using either two screw machines or a combination of high-pressure screw and low-pressure turbine, in order to achieve maximum efficiency for a particular power output. For the low-temperature heat recovery application considered in this paper, the trilateral flash cycle using a two-stage expander and the Smith cycle using a high-pressure screw and low-pressure turbine are both predicted to achieve a similar overall conversion efficiency to that of a conventional saturated vapour organic Rankine cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.