Context. Over the past few years, on several occasions, large, continuous rotations of the electric vector position angle (EVPA) of linearly polarized optical emission from blazars have been reported. These events are often coincident with high energy γ-ray flares and they have attracted considerable attention, since they could allow us to probe the magnetic field structure in the γ-ray emitting region of the jet. The flat-spectrum radio quasar 3C 279 is one of the most prominent examples showing this behaviour. Aims. Our goal is to study the observed EVPA rotations and to distinguish between a stochastic and a deterministic origin of the polarization variability. Methods. We have combined multiple data sets of R-band photometry and optical polarimetry measurements of 3C 279, yielding exceptionally well-sampled flux density and polarization curves that cover a period of [2008][2009][2010][2011][2012]. Several large EVPA rotations are identified in the data. We introduce a quantitative measure for the EVPA curve smoothness, which is then used to test a set of simple random walk polarization variability models against the data. Results. 3C 279 shows different polarization variation characteristics during an optical low-flux state and a flaring state. The polarization variation during the flaring state, especially the smooth ∼360• rotation of the EVPA in mid-2011, is not consistent with the tested stochastic processes. Conclusions. We conclude that, during the two different optical flux states, two different processes govern polarization variation, which is possibly a stochastic process during the low-brightness state and a deterministic process during the flaring activity.
Abstract. Quasar 3C 279 is known to exhibit episodes of optical polarization angle rotation. We present new, well-sampled optical polarization data for 3C 279 and introduce a method to distinguish between random and deterministic electric vector position angle (EVPA) variations. We observe EVPA rotations in both directions with different amplitudes and find that the EVPA variation shows characteristics of both random and deterministic cases. Our analysis indicates that the EVPA variation is likely dominated by a random process in the low brightness state of the jet and by a deterministic process in the flaring state.
Four hard X-ray sources from the INTEGRAL and Swift catalogs have been identified. X-ray and optical spectra have been obtained for each of the objects being studied by using data from the INTEGRAL, Swift, ROSAT, and Chandra X-ray observatories as well as observations with the RTT-150 and AZT-33IK optical telescopes. Two sources (SWIFT J1553.6+2606 and SWIFT J1852.2+8424) are shown to be extragalactic in nature: the first is a quasar, while the registered X-ray flux from the second is the total emission from two Seyfert 1 galaxies at redshifts 0.1828 and 0.2249. The source IGR J22534+6243 resides in our Galaxy and is an X-ray pulsar with a period of ∼ 46.674 s that is a member of a high-mass X-ray binary, probably with a Be star. The nature of yet another Galactic source, SWIFT J1852.8+3002, is not completely clear and infrared spectroscopy is needed to establish it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.